997 research outputs found

    Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    Get PDF
    Context: This paper is part of a larger project in which we study the chemical abundances of extra-galactic post-AGB stars with the ultimate goal of improving our knowledge of the poorly understood AGB third dredge-up mixing processes and s-process nucleosynthesis. Aims: In this paper, we study two carefully selected post-AGB stars in the LMC. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances make these objects ideal probes of the internal AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods: We use high-resolution optical UVES spectra to determine accurate stellar parameters and perform detailed elemental abundance studies. Additionally, we use available photometric data to construct SEDs for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results: Both stars show extreme s-process enrichment associated with relatively low C/O ratios of about 1.3. We could only derive upper limits of the lead (Pb) abundance which indicate no strong Pb overabundances with respect to other s-elements. Comparison with theoretical post-AGB evolutionary tracks in the HR-diagram reveals that both stars have low initial masses between 1.0 and 1.5 Msun. Conclusion: This study adds to the results obtained so far on a very limited number of s-process enriched post-AGB stars in the Magellanic Clouds. We find an increasing discrepancy between observed and predicted Pb abundances towards lower metallicities for all studied Magellanic Cloud post-AGB stars found so far, as well as moderate C/O ratios. We find that all s-process rich post-AGB stars in the LMC and SMC studied so far, cluster in the same region of the HR-diagram and are associated with low-mass stars with a low metallicity on average.Comment: 11 pages, 14 figure

    Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    Full text link
    Context: This paper is part of a larger project in which we study the chemical abundances of extra-galactic post-AGB stars with the ultimate goal of improving our knowledge of the poorly understood AGB third dredge-up mixing processes and s-process nucleosynthesis. Aims: In this paper, we study two carefully selected post-AGB stars in the LMC. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances make these objects ideal probes of the internal AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods: We use high-resolution optical UVES spectra to determine accurate stellar parameters and perform detailed elemental abundance studies. Additionally, we use available photometric data to construct SEDs for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results: Both stars show extreme s-process enrichment associated with relatively low C/O ratios of about 1.3. We could only derive upper limits of the lead (Pb) abundance which indicate no strong Pb overabundances with respect to other s-elements. Comparison with theoretical post-AGB evolutionary tracks in the HR-diagram reveals that both stars have low initial masses between 1.0 and 1.5 Msun. Conclusion: This study adds to the results obtained so far on a very limited number of s-process enriched post-AGB stars in the Magellanic Clouds. We find an increasing discrepancy between observed and predicted Pb abundances towards lower metallicities for all studied Magellanic Cloud post-AGB stars found so far, as well as moderate C/O ratios. We find that all s-process rich post-AGB stars in the LMC and SMC studied so far, cluster in the same region of the HR-diagram and are associated with low-mass stars with a low metallicity on average.Comment: 11 pages, 14 figure

    Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    Get PDF
    Context. This paper is part of a larger project in which we systematically study the chemical abundances of extra-galactic post-asymptotic giant branch (post-AGB) stars. The aim of our programme is to derive chemical abundances of stars covering a large range in luminosity and metallicity with the ultimate goal of testing, constraining, and improving our knowledge of the poorly understood AGB phase, especially the third dredge-up mixing processes and associated s-process nucleosynthesis. Aims. Post-AGB photospheres are dominated by atomic lines and indicate the effects of internal chemical enrichment processes over the entire stellar lifetime. In this paper, we study two carefully selected post-AGB stars: J051213.81-693537.1 and J051848.86-700246.9 in the Large Magellanic Cloud (LMC). Both objects show signs of s-process enhancement. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances (and hence luminosities and initial masses) make these objects ideal probes of the AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods. We use high-resolution optical UVES spectra to determine accurate stellar parameters and subsequently perform detailed elemental abundance studies of post-AGB stars. Additionally, we use available photometric data covering optical and IR bands to construct spectral energy distributions for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results. We obtained accurate atmospheric parameters for J051213.81-693537.1 (Teff = 5875 ± 125 K, log g = 1.00 ± 0.25 dex, [Fe/H] = -0.56 ± 0.16 dex) and J051848.86-700246.9 (Teff = 6000 ± 125 K, log g = 0.50 ± 0.25 dex, [Fe/H] = -1.06 ± 0.17 dex). Both stars show extreme s-process enrichment associated with relatively low C/O ratios of 1.26 ± 0.40 and 1.29 ± 0.30 for J051213-693537.1 and J051848-700246.9, respectively. We could only derive upper limits of the lead (Pb) abundance. These upper limits show a possible very slight Pb overabundance with respect to heavy s-elements for J051213-693537.1, while J051848-700246.9 shows an upper limit of the Pb abundance similar to [hs/Fe]. A comparison with theoretical post-AGB evolutionary tracks in the HR-diagram reveals that both stars have low initial masses between 1.0 and 1.5 Mo. Conclusions. This study adds to the results obtained so far on a very limited number of s-process enriched stars in the Magellanic Clouds. With the addition of the two stars in this study, we find an increasing discrepancy between observed and predicted Pb abundances towards lower metallicities of the studied s-process rich post-AGB stars in the Magellanic Clouds. The more metal-rich J051213-693537.1 fits the theoretical Pb abundance predictions well, while the five other objects with [Fe/H] < 1, including J051848-700246.9, have much lower Pb overabundances than predicted. In all objects found so far, including the objects in this study, the C/O ratio is very moderate because of the enhancement of O as well as C. We find that all s-process rich stars in the LMC and SMC studied so far, cluster in the same region of the HR-diagram and are associated with low-mass stars with a low metallicity on average. We corroborate the published lack of correlation between the metallicity and the neutron irradiation, while the neutron exposure ([hs/ls]) is strongly correlated with the third dredge-up efficiency ([s/Fe]). These correlations seem to hold in our Galaxy as well as in the Magellanic Clouds

    Platybunus pinetorum (Arachnida, Opiliones) new to Sweden

    Get PDF
    In 2013 and 2015 several specimens of the opilionid Platybunus pinetorum (C.L. Koch, 1839) were found in Sweden in two different places almost 500 kilometers from each other. The species was not previously known in the country. The discovery initiated a survey of specimens reported as Rilaena triangularis (Herbst, 1799) on two Swedish web pages, in search for misidentified P. pinetorum. A further three specimens of the new species were found, indicating that it is already rather widespread in southern Sweden

    Characteristic Angles in the Wetting of an Angular Region: Deposit Growth

    Full text link
    As was shown in an earlier paper [1], solids dispersed in a drying drop migrate to the (pinned) contact line. This migration is caused by outward flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper [2], we theoretically investigate the evaporation rate, the flow field and the rate of growth of the deposit patterns in a drop over an angular sector on a plane substrate. Asymptotic power laws near the vertex (as distance to the vertex goes to zero) are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The deposited mass falls off as a weak power Gamma of distance close to the vertex and as a stronger power Beta of distance further from the vertex. The power Gamma depends only slightly on the opening angle Alpha and stays between roughly -1/3 and 0. The power Beta varies from -1 to 0 as the opening angle increases from 0 to 180 degrees. At a given distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the growth rate occurring at the early stages of the drying process.Comment: v1: 36 pages, 21 figures, LaTeX; submitted to Physical Review E; v2: minor additions to Abstract and Introductio

    The cellular interactions of PEGylated gold nanoparticles : effect of PEGylation on cellular uptake and cytotoxicity

    Get PDF
    Poly(ethylene glycol) (PEG) is frequently used to coat various medical nanoparticles (NPs). As PEG is known to minimize NP interactions with biological specimens, the question remains whether PEGylated NPs are intrinsically less toxic or whether this is caused by reduced NP uptake. In the present work, the effect of gold NP PEGylation on uptake by three cell types is compared and evaluated the effect on cell viability, oxidative stress, cell morphology, and functionality using a multiparametric methodology. The data reveal that PEGylation affects cellular NP uptake in a cell-type-dependent manner and influences toxicity by different mechanisms. At similar intracellular NP numbers, PEGylated NPs are found to yield higher levels of cell death, mostly by induction of oxidative stress. These findings reveal that PEGylation significantly reduces NP uptake, but that at similar functional (= cell-associated) NP levels, non-PEGylated NPs are better tolerated by the cells
    • …
    corecore