146 research outputs found

    Short-distance matrix elements for D0-meson mixing from Nf=2+1 lattice QCD

    Get PDF
    We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five ΔC=2 four-fermion operators that contribute to neutral D-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration’s Nf=2+1 lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as Mπ ≈ 180 MeV and lattice spacings as fine as a ≈ 0.045 fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the MS−NDR scheme using the choice of evanescent operators proposed by Beneke et al., evaluated at 3 GeV, ⟨D0|Oi|¯D0⟩ = {0.0805(55)16),−0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)} GeV4 (i=1–5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in D0 mixing, finding lower limits of about 10–50×103 TeV for couplings of O(1). To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly used scheme of Buras, Misiak, and Urban

    B(s)0B^0_{(s)}-mixing matrix elements from lattice QCD for the Standard Model and beyond

    Get PDF
    We calculate---for the first time in three-flavor lattice QCD---the hadronic matrix elements of all five local operators that contribute to neutral B0B^0- and BsB_s-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral BB-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio ξ=1.206(18)(6)\xi = 1.206(18)(6), where the second error stems from the omission of charm sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from BB mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light valence quarks, and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral BB-meson oscillation frequencies to determine the CKM matrix elements Vtd=8.00(34)(8)×103|V_{td}| = 8.00(34)(8) \times 10^{-3}, Vts=39.0(1.2)(0.4)×103|V_{ts}| = 39.0(1.2)(0.4) \times 10^{-3}, and Vtd/Vts=0.2052(31)(10)|V_{td}/V_{ts}| = 0.2052(31)(10), which differ from CKM-unitarity expectations by about 2σ\sigma. These results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.Comment: 75 pp, 17 figs. Ver 2 fixes typos; corrects mistakes resulting in slight changes to results, correlation matrices; updates decay constants to agree with recent PDG update; corrects uncertainties for tree-level CKM matrix elements used in comparison, slightly reducing tensions; includes additional analyses that support mostly-nonperturbative matching; expands discussion of isospin-breaking effect

    Update of Vcb|V_{cb}| from the BˉDνˉ\bar{B}\to D^*\ell\bar{\nu} form factor at zero recoil with three-flavor lattice QCD

    Get PDF
    We compute the zero-recoil form factor for the semileptonic decay Bˉ0D+νˉ\bar{B}^0\to D^{*+}\ell^-\bar{\nu} (and modes related by isospin and charge conjugation) using lattice QCD with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC \asqtad\ configurations), and the Fermilab action for the heavy quarks. Our calculations incorporate higher statistics, finer lattice spacings, and lighter quark masses than our 2008 work. As a byproduct of tuning the new data set, we obtain the DsD_s and BsB_s hyperfine splittings with few-MeV accuracy. For the zero-recoil form factor, we obtain F(1)=0.906(4)(12)\mathcal{F}(1)=0.906(4)(12), where the first error is statistical and the second is the sum in quadrature of all systematic errors. With the latest HFAG average of experimental results and a cautious treatment of QED effects, we find Vcb=(39.04±0.49expt±0.53QCD±0.19QED)×103|V_{cb}| = (39.04 \pm 0.49_\text{expt} \pm 0.53_\text{QCD} \pm 0.19_\text{QED})\times10^{-3}. The QCD error is now commensurate with the experimental error.Comment: 53 pages, 12 figures; expanded discussion of correlator fits, typos corrected, conforms to version published in PR

    Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    Get PDF
    We compute the leptonic decay constants fD+, fDs, and fK+ and the quark-mass ratios mc/ms and ms/ml in unquenched lattice QCD using the experimentally determined value of fπ+ for normalization. We use the MILC highly improved staggered quark ensembles with four dynamical quark flavors—up, down, strange, and charm—and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from a≈0.06 to 0.15 fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results are fD+=212.6(0.4)(+1.0−1.2)  MeV, fDs=249.0(0.3)(+1.1−1.5)  MeV, and fDs/fD+=1.1712(10)(+29−32), where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately 2–4 times smaller than those of the most precise previous lattice calculations. We also obtain fK+/fπ+=1.1956(10)(+26−18), updating our previous result, and determine the quark-mass ratios ms/ml=27.35(5)(+10−7) and mc/ms=11.747(19)(+59−43). When combined with experimental measurements of the decay rates, our results lead to precise determinations of the Cabibbo-Kobayashi-Maskawa matrix elements |Vus|=0.22487(51)(29)(20)(5), |Vcd|=0.217(1)(5)(1) and |Vcs|=1.010(5)(18)(6), where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of |Vus|, the uncertainty in |Vud|, respectively

    BπB\to\pi\ell\ell form factors for new-physics searches from lattice QCD

    Get PDF
    The rare decay Bπ+B\to\pi\ell^+\ell^- arises from bdb\to d flavor-changing neutral currents and could be sensitive to physics beyond the Standard Model. Here, we present the first abab-initioinitio QCD calculation of the BπB\to\pi tensor form factor fTf_T. Together with the vector and scalar form factors f+f_+ and f0f_0 from our companion work [J. A. Bailey et al.et~al., Phys. Rev. D 92, 014024 (2015)], these parameterize the hadronic contribution to BπB\to\pi semileptonic decays in any extension of the Standard Model. We obtain the total branching ratio BR(B+π+μ+μ)=20.4(2.1)×109{\text{BR}}(B^+\to\pi^+\mu^+\mu^-)=20.4(2.1)\times10^{-9} in the Standard Model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al.et~al., JHEP 1212, 125 (2012)]. Note added: after this paper was submitted for publication, LHCb announced a new measurement of the differential decay rate for this process [T. Tekampe, talk at DPF 2015], which we now compare to the shape and normalization of the Standard-Model prediction.Comment: V3: Corrected errors in results for Standard-Model differential and total decay rates in abstract, Fig. 3, Table IV, and outlook. Added new preliminary LHCb data to Fig. 3 and brief discussion after outlook. Replaced outdated correlation matrix in Table III with correct final version. Other minor wording changes and references added. 7 pages, 4 tables, 3 figure

    BKl+lB\to Kl^+l^- decay form factors from three-flavor lattice QCD

    Get PDF
    We compute the form factors for the BKl+lB \to Kl^+l^- semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy bb quark. We present results for the form factors f+(q2)f_+(q^2), f0(q2)f_0(q^2), and fT(q2)f_T(q^2), where q2q^2 is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of q2q^2, and we use the model-independent zz expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the zz expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low q2q^2. We also compare a Standard-Model calculation of the branching ratio for BKl+lB \to Kl^+l^- with experimental data.Comment: V2: Fig.7 added. Typos text corrected. Reference added. Version published in Phys. Rev.

    Strong-isospin-breaking correction to the muon anomalous magnetic moment from lattice QCD at the physical point

    Get PDF
    All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to-date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to aμHVPa_\mu^{\rm HVP} for the first time with physical values of mum_u and mdm_d and dynamical uu, dd, ss, and cc quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δaμHVP,mumd\delta a_\mu^{{\rm HVP,} m_u \neq m_d}= +1.5(4)\%, in agreement with estimates from phenomenology and a recent lattice-QCD calculation with unphysically heavy pions

    Determination of Vus|V_{us}| from a lattice-QCD calculation of the KπνK\to\pi\ell\nu semileptonic form factor with physical quark masses

    Full text link
    We calculate the kaon semileptonic form factor f+(0)f_+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC collaboration with Nf=2+1+1N_f=2+1+1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, f+(0)=0.9704(32)f_+(0) = 0.9704(32), where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of KK semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element Vus=0.22290(74)(52)|V_{us}|=0.22290(74)(52), where the first error is from f+(0)f_+(0) and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from Vus|V_{us}| is now comparable to that from Vud|V_{ud}|.Comment: 6 pages, 2 figures; version published in PR

    Evidence for νμντ\nu_\mu \to \nu_\tau appearance in the CNGS neutrino beam with the OPERA experiment

    Full text link
    The OPERA experiment is designed to search for νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations in appearance mode i.e. through the direct observation of the τ\tau lepton in ντ\nu_{\tau} charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two ντ\nu_{\tau} candidates with a τ\tau decaying into hadrons were observed in a sub-sample of data of the 2008-2011 runs. Here we report the observation of a third ντ\nu_\tau candidate in the τμ\tau^-\to\mu^- decay channel coming from the analysis of a sub-sample of the 2012 run. Taking into account the estimated background, the absence of νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations is excluded at the 3.4 σ\sigma level.Comment: 9 pages, 5 figures, 1 table

    Determination of a time-shift in the OPERA set-up using high energy horizontal muons in the LVD and OPERA detectors

    Full text link
    The purpose of this work is to report the measurement of a time-shift in the OPERA set-up in a totally independent way from Time Of Flight (TOF) measurements of CNGS neutrino events. The LVD and OPERA experiments are both installed in the same laboratory: LNGS. The relative position of the two detectors, separated by an average distance of ~ 160 m, allows the use of very high energy horizontal muons to cross-calibrate the timing systems of the two detectors, using a TOF technique which is totally independent from TOF of CNGS neutrino events. Indeed, the OPERA-LVD direction lies along the so-called "Teramo anomaly", a region in the Gran Sasso massif where LVD has established, many years ago, the existence of an anomaly in the mountain structure, which exhibits a low m. w. e. thickness for horizontal directions. The "abundant" high-energy horizontal muons (nearly 100 per year) going through LVD and OPERA exist because of this anomaly in the mountain orography. The total live time of the data in coincidence correspond to 1200 days from mid 2007 until March 2012. The time coincidence study of LVD and OPERA detectors is based on 306 cosmic horizontal muon events and shows the existence of a negative time shift in the OPERA set-up of the order of deltaT(AB) = - (73 \pm 9) ns when two calendar periods, A and B, are compared. This result shows a systematic effect in the OPERA timing system from August 2008 until December 2011. The size of the effect is comparable with the neutrino velocity excess recently measured by OPERA. It is probably interesting not to forget that with the MRPC technology developed by the ALICE Bologna group the TOF world record accuracy of 20 ps was reached. That technology can be implemented at LNGS for a high precision determination of TOF with the CNGS neutrino beams of an order of magnitude smaller than the value of the OPERA systematic effect
    corecore