23 research outputs found

    Fruit and vegetable intake and cardiovascular risk factors in people with newly diagnosed type 2 diabetes.

    Get PDF
    BACKGROUND/OBJECTIVES: The cardiovascular benefit of increasing fruit and vegetable (F&V) intake following diagnosis of diabetes remains unknown. We aimed to describe how quantity and variety of F&V intake, and plasma vitamin C, change after diagnosis of type 2 diabetes and examine whether these changes are associated with improvements in cardiovascular risk factors. SUBJECTS/METHODS: A total of 401 individuals with screen-detected diabetes from the ADDITION-Cambridge study were followed up over 5 years. F&V intake was assessed by food frequency questionnaire and plasma vitamin C at baseline, at 1 year and at 5 years. Linear mixed models were used to estimate associations of changes in quantity and variety of F&V intake, and plasma vitamin C, with cardiovascular risk factors and a clustered cardiometabolic risk score (CCMR), where a higher score indicates higher risk. RESULTS: F&V intake increased in year 1 but decreased by year 5, whereas variety remained unchanged. Plasma vitamin C increased at 1 year and at 5 years. Each s.d. increase (250g between baseline and 1 year and 270g between 1 and 5 years) in F&V intake was associated with lower waist circumference (-0.92 (95% CI: -1.57, -0.27) cm), HbA1c (-0.11 (-0.20, -0.03) %) and CCMR (-0.04 (-0.08, -0.01)) at 1 year and higher high-density lipoprotein (HDL)-cholesterol (0.04 (0.01, 0.06) mmol/l) at 5 years. Increased plasma vitamin C (per s.d., 22.5 μmol/l) was associated with higher HDL-cholesterol (0.04 (0.01, 0.06) mmol/l) and lower CCMR (-0.07 (-0.12, -0.03)) between 1 and 5 years. CONCLUSIONS: Increases in F&V quantity following diagnosis of diabetes are associated with lower cardiovascular risk factors. Health promotion interventions might highlight the importance of increasing, and maintaining increases in, F&V intake for improved cardiometabolic health in patients with diabetes.The ADDITION-Cambridge study was supported by the Wellcome Trust (grant G061895), the Medical Research Council (grant G0001164), the National Institute for Health Research (NIHR) Health Technology Assessment Programme (grant 08/116/300), National Health Service R&D support funding (including the Primary Care Research and Diabetes Research Networks). SJG received support from the Department of Health NIHR Programme Grant funding scheme (grant RP-PG-0606-1259). Bio-Rad provided equipment for HbA1c testing during the screening phase

    ‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude

    Get PDF
    Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link
    corecore