26 research outputs found

    Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from <it>Heliophila coronopifolia</it>, a native South African Brassicaceae species.</p> <p>Results</p> <p>Four defensin genes (<it>Hc-AFP1</it>-<it>4) </it>were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from <it>Arabidopsis </it>and <it>Raphanus</it>. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC<sub>50 </sub>values of 5-20 μg ml<sup>-1 </sup>against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against <it>Botrytis cinerea </it>was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen <it>Fusarium solani</it>, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of membrane activity. The peptides have a tissue-specific expression pattern since differential gene expression was observed in the native host. <it>Hc-AFP1 </it>and <it>3 </it>expressed in mature leaves, stems and flowers, whereas <it>Hc-AFP2 </it>and <it>4 </it>exclusively expressed in seedpods and seeds.</p> <p>Conclusions</p> <p>Two novel Brassicaceae defensin sequences were isolated amongst a group of four defensin encoding genes from the indigenous South African plant <it>H. coronopifolia</it>. All four peptides were active against two test pathogens, but displayed differential activities and modes of action. The expression patterns of the peptide encoding genes suggest a role in protecting either vegetative or reproductive structures in the native host against pathogen attack, or roles in unknown developmental and physiological processes in these tissues, as was shown with other defensins.</p

    Acute hantavirus infection presenting as haemolytic-uraemic syndrome (HUS): the importance of early clinical diagnosis

    Get PDF
    The European prototype of hantavirus, Puumala virus (PUUV), isolated from a common wild rodent, the bank vole (Myodes glareolus), causes nephropathia epidemica (NE). NE can perfectly mimic haemolytic-uraemic syndrome (HUS), progressing from an aspecific flu-like syndrome to acute kidney injury with thrombocytopaenia, and presenting with some signs of haemolytic anaemia and/or coagulopathy. Moreover, both NE and HUS can occur in local outbreaks. We report an isolated case of NE, initially referred for plasmapheresis for suspected HUS, although signs of overt haemolysis were lacking. Early suspicion of hantavirus infection, later confirmed by serology and reverse transcription polymerase chain reaction (RT-PCR), prevented subsequent excessive treatment modalities.status: publishe

    Update on therapy of relapsed and refractory multiple myeloma

    Full text link
    The prognosis for multiple myeloma patients has improved substantially over the past decade with the development of more effective chemotherapeutic agents and regimens that possess a high level of anti-tumour activity. However, nearly all multiple myeloma patients ultimately relapse, even those who experience a complete response to initial therapy. Management of relapsed disease remains a critical aspect of multiple myeloma care and an important area of ongoing research. This manuscript from the Belgian Haematology Society multiple myeloma subgroup provides some recommendations on the management of relapsed disease
    corecore