488 research outputs found

    Massive Parallel Quantum Computer Simulator

    Get PDF
    We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.Comment: To appear in Comp. Phys. Com

    Worrying and rumination are both associated with reduced cognitive control

    Get PDF
    Persistent negative thought is a hallmark feature of both major depressive disorder and generalized anxiety disorder. Despite its clinical significance, little is known about the underlying mechanisms of persistent negative thought. Recent studies suggest that reduced cognitive control might be an explanatory factor. We investigated the association between persistent negative thought and switching between internal representations in working memory, using the internal shift task (IST). The IST was administered to a group of undergraduates, classified as high-ruminators versus low-ruminators, or high-worriers versus low-worriers. Results showed that high-ruminators and high-worriers have more difficulties to switch between internal representations in working memory as opposed to low-ruminators and low-worriers. Importantly, results were only significant when the negative stimuli used in the IST reflected personally relevant worry themes for the participants. The results of this study indicate that rumination and worrying are both associated with reduced cognitive control for verbal information that is personally relevant

    Continuous-Time Quantum Monte Carlo Algorithm for the Lattice Polaron

    Full text link
    An efficient continuous-time path-integral Quantum Monte Carlo algorithm for the lattice polaron is presented. It is based on Feynman's integration of phonons and subsequent simulation of the resulting single-particle self-interacting system. The method is free from the finite-size and finite-time-step errors and works in any dimensionality and for any range of electron-phonon interaction. The ground-state energy and effective mass of the polaron are calculated for several models. The polaron spectrum can be measured directly by Monte Carlo, which is of general interest.Comment: 5 pages, 4 figures, published versio

    The Stochastic State Selection Method Combined with the Lanczos Approach to Eigenvalues in Quantum Spin Systems

    Full text link
    We describe a further development of the stochastic state selection method, a new Monte Carlo method we have proposed recently to make numerical calculations in large quantum spin systems. Making recursive use of the stochastic state selection technique in the Lanczos approach, we estimate the ground state energy of the spin-1/2 quantum Heisenberg antiferromagnet on a 48-site triangular lattice. Our result for the upper bound of the ground state energy is -0.1833 +/- 0.0003 per bond. This value, being compatible with values from other work, indicates that our method is efficient in calculating energy eigenvalues of frustrated quantum spin systems on large lattices.Comment: 11 page

    Time-gated transillumination and reflection by biological tissues and tissuelike phantoms: simulation versus experiment

    Get PDF
    A numerical method is presented to solve exactly the time-dependent diffusion equation that describes light transport in turbid media. The simulation takes into account spatial variations of the scattering and absorption factors of the medium and the objects as well as random fluctuations of these quantities. The technique is employed to explore the possibility of locating millimeter-sized objects immersed in turbid media from time-gated measurements of the transmitted or reflected (near-infrared) light. The simulation results for tissue-like phantoms are compared with experimental transillumination data, and excellent agreement is found. Simulations of time-gated reflection experiments indicate that it may be possible to detect objects of 1-mm radius.

    Decoherence by a chaotic many-spin bath

    Get PDF
    We numerically investigate decoherence of a two-spin system (central system) by a bath of many spins 1/2. By carefully adjusting parameters, the dynamical regime of the bath has been varied from quantum chaos to regular, while all other dynamical characteristics have been kept practically intact. We explicitly demonstrate that for a many-body quantum bath, the onset of quantum chaos leads to significantly faster and stronger decoherence compared to an equivalent non-chaotic bath. Moreover, the non-diagonal elements of the system's density matrix decay differently for chaotic and non-chaotic baths. Therefore, knowledge of the basic parameters of the bath (strength of the system-bath interaction, bath's spectral density of states) is not always sufficient, and much finer details of the bath's dynamics can strongly affect the decoherence process.Comment: 4 pages, RevTeX, 5 eps figure

    Hidden assumptions in the derivation of the Theorem of Bell

    Full text link
    John Bell's inequalities have already been considered by Boole in 1862. Boole established a one-to-one correspondence between experimental outcomes and mathematical abstractions of his probability theory. His abstractions are two-valued functions that permit the logical operations AND, OR and NOT and are the elements of an algebra. Violation of the inequalities indicated to Boole an inconsistency of definition of the abstractions and/or the necessity to revise the algebra. It is demonstrated in this paper, that a violation of Bell's inequality by Einstein-Podolsky-Rosen type of experiments can be explained by Boole's ideas. Violations of Bell's inequality also call for a revision of the mathematical abstractions and corresponding algebra. It will be shown that this particular view of Bell's inequalities points toward an incompleteness of quantum mechanics, rather than to any superluminal propagation or influences at a distance
    corecore