6,727 research outputs found

    Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic BCS-RPA approximation

    Full text link
    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry RPA) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximationsComment: 4 pages, 1 figur

    The Josephson effect throughout the BCS-BEC crossover

    Full text link
    We study the stationary Josephson effect for neutral fermions across the BCS-BEC crossover, by solving numerically the Bogoliubov-de Gennes equations at zero temperature. The Josephson current is found to be considerably enhanced for all barriers at about unitarity. For vanishing barrier, the Josephson critical current approaches the Landau limiting value which, depending on the coupling, is determined by either pair-breaking or sound-mode excitations. In the coupling range from the BCS limit to unitarity, a procedure is proposed to extract the pairing gap from the Landau limiting current.Comment: 4 pages, 3 figures; improved version to appear in Phys. Rev. Let

    Effective interaction between molecules in the BEC regime of a superfluid Fermi gas

    Full text link
    We investigate the effective interaction between Cooper-pair molecules in the st rong-coupling BEC regime of a superfluid Fermi gas with a Feshbach resonance. Our work uses a path integral formulation and a renormalization group (RG) analy sis of fluctuations in a single-channel model. We show that a physical cutoff en ergy ωc\omega_c originating from the finite molecular binding energy is the key to understanding the interaction between molecules in the BEC regime. Our work t hus clarifies recent results by showing that aM=2aFa_{\rm M}=2a_{\rm F} is a {\it ba re} molecular scattering length while aM=(0.60.75)aFa_{\rm M}=(0.6\sim0.75) a_{\rm F} is the low energy molecular scattering length renormalized to include high-energy scat tering up to ωc\omega_c (here aFa_{\rm F} is the scattering length between Fermi atoms). We also include many-body effects at finite temperatures. We find that aMa_{\rm M} is strongly dependent on temperature, vanishing at TcT_{\rm c}, consistent with the earlier Bose gas results of Bijlsma and Stoof.Comment: 10 pages, 3 figure

    Momentum distribution of a trapped Fermi gas with large scattering length

    Full text link
    Using a scattering length parametrization of the BCS-BEC crossover as well as the local density approximation for the density profile, we calculate the momentum distribution of a harmonically trapped atomic Fermi gas at zero temperature. Various interaction regimes are considered, including the BCS phase, the unitarity limit and the molecular regime. We show that the relevant parameter which characterizes the crossover is given by the dimensionless combination N1/6a/ahoN^{1/6}a/a_{ho}, where NN is the number of atoms, aa is the scattering length and ahoa_{ho} is the oscillator length. The width of the momentum distribution is shown to depend in a crucial way on the value and sign of this parameter. Our predictions can be relevant for experiments on ultracold atomic Fermi gases near a Feshbach resonance.Comment: 6 pages, 2 figures. Submitted to Phys. Rev. A. Added reference

    Climate Change and Childhood Respiratory Health: A Call to Action for Paediatricians

    Get PDF
    Climate change (CC) is one of the main contributors to health emergencies worldwide. CC appears to be closely interrelated with air pollution, as some pollutants like carbon dioxide (CO2), nitrogen oxides (NOx) and black carbon are naturally occurring greenhouse gases. Air pollution may enhance the allergenicity of some plants and, also, has an adverse effect on respiratory health. Children are a uniquely vulnerable group that suffers disproportionately from CC burden. The increasing global warming related to CC has a big impact on plants' lifecycles, with earlier and longer pollen seasons, as well as higher pollen production, putting children affected by asthma and allergic rhinitis at risk for exacerbations. Extreme weather events may play a role too, not only in the exacerbations of allergic respiratory diseases but, also, in favouring respiratory infections. Even though paediatricians are already seeing the impacts of CC on their patients, their knowledge about CC-related health outcomes with specific regards to children's respiratory health is incomplete. This advocates for paediatricians' increased awareness and a better understanding of the CC impact on children's respiratory health. Having a special responsibility for children, paediatricians should actively be involved in policies aimed to protect the next generation from CC-related adverse health effects. Hence, there is an urgent need for them to take action and successfully educate families about CC issues. This paper aims at reviewing the evidence of CC-related environmental factors such as temperature, humidity, rainfall and extreme events on respiratory allergic diseases and respiratory infections in children and proposing specific actionable items for paediatricians to deal with CC-related health issues in their clinical practice

    Homogeneous Fermion Superfluid with Unequal Spin Populations

    Full text link
    For decades, the conventional view is that an s-wave BCS superfluid can not support uniform spin polarization due to a gap Δ\Delta in the quasiparticle excitation spectrum. We show that this is an artifact of the dismissal of quasiparticle interactions VqpV_{qp}^{} in the conventional approach at the outset. Such interactions can cause triplet fluctuations in the ground state and hence non-zero spin polarization at "magnetic field" h<Δh<\Delta. The resulting ground state is a pairing state of quasiparticles on the ``BCS vacuum". For sufficiently large VqpV_{qp}, the spin polarization of at unitarity has the simple form mμ1/2m\propto \mu^{1/2}. Our study is motivated by the recent experiments at Rice which found evidence of a homogenous superfluid state with uniform spin polarization.Comment: 4 pages, 3 figure

    Data acquisition software for the CMS strip tracker

    Get PDF
    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

    Density-induced BCS to Bose-Einstein crossover

    Get PDF
    We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it with the attractive potential and the particle density.We emphasize specifically the role played by the particle density in this crossover.Three different interparticle potentials are considered for the continuum model in three spatial dimensions, while both s- and d-wave solutions are analyzed for the attractive (extended) Hubbard model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the d-wave solution is discussed.In particular, in the strong-coupling limit when approaching half filling we evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different composite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure
    corecore