321 research outputs found

    Shear thickening and jamming of dense suspensions: The “roll" of friction

    Get PDF
    Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gear-like rolling. Rolling friction decreases the volume fraction required for DST and SJ, in quantitative agreement with real-life suspensions with adhesive surface chemistries and "rough" particle shapes. It sets a distinct structure of the frictional force network compared to only sliding friction, and from a dynamical perspective leads to an increase in the velocity correlation length, in part responsible for the increased viscosity. The physics of rolling friction is thus a key element in achieving a comprehensive understanding of strongly shear-thickening materials.Comment: 5 pages, 4 figures. +Supplemental Material--- --- Supplementary Material also consists of the following movies: ---https://youtu.be/wgrfN7jiu1g (Force network in 3D at volume fraction 0.45, at high stress limit, with and without rolling friction) --- https://youtu.be/SMzTB7CsRsY (Force network in 2D at packing fraction 0.7, at high stress limit, with and without rolling friction

    Increased circulating microRNAs miR-342-3p and miR-21-5p in natural sheep prion disease

    Get PDF
    Scrapie is a transmissible spongiform encephalopathy (TSE), or prion disease, of sheep and goats. As no simple diagnostic tests are yet available to detect TSEs in vivo, easily accessible biomarkers could facilitate the eradication of scrapie agents from the food chain. To this end, we analysed by quantitative reverse transcription PCR a selected set of candidate microRNAs (miRNAs) from circulating blood plasma of naturally infected, classical scrapie sheep that demonstrated clear scrapie symptoms and pathology. Significant scrapie-associated increase was repeatedly found for miR-342-3p and miR-21-5p. This is the first demonstration, to our knowledge, of circulating miRNA alterations in any animal suffering from TSE. Genome-wide expression studies are warranted to investigate the true depth of miRNA alterations in naturally occurring TSEs, especially in presymptomatic animals, as the presented study demonstrates the potential feasibility of miRNAs as circulating TSE biomarkers

    Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model

    Get PDF
    An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile

    State-of-the-art of spatial arch bridges

    No full text
    The paper describes a new form of bridge called a spatial arch bridge. This bridge type was developed in response to the demand for landmark structures, which have started to appear in the modern urban landscape to provide a symbol of originality, innovation and progress. Spatial arch bridges are defined as bridges in which the vertical deck loads produce bending moments and shear forces not contained in the arch plane, owing to their geometrical and structural configuration. Moreover, the arch itself may not be contained in a plane. The different variables and geometries that create such a structural configuration have been studied and classified. A wide compilation of examples of this bridge type has been made in chronological order, according to their construction date, from Maillarts first concrete spatial arch bridges to the latest designs and materials

    Rheumatoid arthritis and the role of oral bacteria

    Get PDF
    Rheumatoid arthritis (RA) and periodontal disease (PD) have shown similar physiopathologic mechanisms such as chronic inflammation with adjacent bone resorption in an immunogenetically susceptible host; however, PD has a well-recognized bacterial etiology while the cause of RA is unclear. Some reports have indicated that an infectious agent in a susceptible host could be one possible trigger factor for RA, and it has been suggested that oral microorganisms, specialty periodontal bacteria could be the infectious agent (mainly Porphyromonas gingivalis). It has been reported that PD is more frequent and more severe in patients with RA, suggesting a positive association between both diseases. There have been reports regarding the detection of antibodies against periodontal bacteria while other studies have identified periodontal bacterial DNA in serum and synovial fluid of RA patients and have explored the possible pathways of transport of periodontal bacterial DNA. In conclusion, there is no question that RA and PD have pathologic features in common and there is strong evidence of an association between both diseases, but further studies, including experimental models, are needed to demonstrate the arthritogenicity of oral microorganisms

    Genetic polymorphisms of RANTES, IL1-A, MCP-1 and TNF-A genes in patients with prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation has been implicated as an etiological factor in several human cancers, including prostate cancer. Allelic variants of the genes involved in inflammatory pathways are logical candidates as genetic determinants of prostate cancer risk. The purpose of this study was to investigate whether single nucleotide polymorphisms of genes that lead to increased levels of pro-inflammatory cytokines and chemokines are associated with an increased prostate cancer risk.</p> <p>Methods</p> <p>A case-control study design was used to test the association between prostate cancer risk and the polymorphisms <it>TNF-A</it>-308 A/G (rs 1800629), <it>RANTES</it>-403 G/A (rs 2107538), <it>IL1-A</it>-889 C/T (rs 1800587) and <it>MCP-1 </it>2518 G/A (rs 1024611) in 296 patients diagnosed with prostate cancer and in 311 healthy controls from the same area.</p> <p>Results</p> <p>Diagnosis of prostate cancer was significantly associated with <it>TNF-A </it>GA + AA genotype (OR, 1.61; 95% CI, 1.09–2.64) and <it>RANTES </it>GA + AA genotype (OR, 1.44; 95% CI, 1.09–2.38). A alleles in <it>TNF-A </it>and <it>RANTES </it>influenced prostate cancer susceptibility and acted independently of each other in these subjects. No epistatic effect was found for the combination of different polymorphisms studied. Finally, no overall association was found between prostate cancer risk and <it>IL1-A </it>or <it>MCP-1 </it>polymorphisms.</p> <p>Conclusion</p> <p>Our results and previously published findings on genes associated with innate immunity support the hypothesis that polymorphisms in proinflammatory genes may be important in prostate cancer development.</p

    Bright light-emitting diodes based on organometal halide perovskite.

    Get PDF
    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.This is the author accepted manuscript and will be under embargo until 3/2/15. The final version is published in Nature Nanotechnology: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.149.html

    Exercise Improves Cognitive Responses to Psychological Stress through Enhancement of Epigenetic Mechanisms and Gene Expression in the Dentate Gyrus

    Get PDF
    Background We have shown previously that exercise benefits stress resistance and stress coping capabilities. Furthermore, we reported recently that epigenetic changes related to gene transcription are involved in memory formation of stressful events. In view of the enhanced coping capabilities in exercised subjects we investigated epigenetic, gene expression and behavioral changes in 4-weeks voluntarily exercised rats. Methodology/Principal Findings Exercised and control rats coped differently when exposed to a novel environment. Whereas the control rats explored the new cage for the complete 30-min period, exercised animals only did so during the first 15 min after which they returned to sleeping or resting behavior. Both groups of animals showed similar behavioral responses in the initial forced swim session. When re-tested 24 h later however the exercised rats showed significantly more immobility behavior and less struggling and swimming. If rats were killed at 2 h after novelty or the initial swim test, i.e. at the peak of histone H3 phospho-acetylation and c-Fos induction, then the exercised rats showed a significantly higher number of dentate granule neurons expressing the histone modifications and immediate-early gene induction. Conclusions/Significance Thus, irrespective of the behavioral response in the novel cage or initial forced swim session, the impact of the event at the dentate gyrus level was greater in exercised rats than in control animals. Furthermore, in view of our concept that the neuronal response in the dentate gyrus after forced swimming is involved in memory formation of the stressful event, the observations in exercised rats of enhanced neuronal responses as well as higher immobility responses in the re-test are consistent with the reportedly improved cognitive performance in these animals. Thus, improved stress coping in exercised subjects seems to involve enhanced cognitive capabilities possibly resulting from distinct epigenetic mechanisms in dentate gyrus neurons
    corecore