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Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) sus-
pensions are used to study the role of stress-activated constraints, with an emphasis on resistance
to gear-like rolling. Rolling friction decreases the volume fraction required for DST and SJ, in quan-
titative agreement with real-life suspensions with adhesive surface chemistries and “rough” particle
shapes. It sets a distinct structure of the frictional force network compared to only sliding friction,
and from a dynamical perspective leads to an increase in the velocity correlation length, in part re-
sponsible for the increased viscosity. The physics of rolling friction is thus a key element in achieving
a comprehensive understanding of strongly shear-thickening materials.

Introduction: The flow properties of dense suspen-
sions of non-Brownian particles are critical in numerous
natural and industrial processes [1–6]. Under shear, such
suspensions can display extreme non-Newtonian phe-
nomena [1, 3, 7] that originate in details of interfacial
forces [2, 8] as well as frictional contact forces [9, 10].
In particular, strong shear thickening, a phenomenon of
both fundamental interest and practical importance [1–
3], represents a crossover from unconstrained to con-
strained tangential pairwise particle motions as the im-
posed shear stress σ increases and a repulsive force
threshold (F0, defined below) is exceeded [11–14]. Such
stress-activated constraints can originate from Coulom-
bic, static friction [9–16] or from a combined effect of hy-
drodynamics and asperities [17]. Static friction enhances
correlated motion and stabilizes load-bearing force net-
works against buckling, thereby leading to a reduced jam-
ming volume fraction φµJ(σ) [18] and ultimately an in-
creased viscosity set by η ≡ σ/γ̇ ∼ (1 − φ/φµJ(σ))−2,
with γ̇ the shear rate. Indeed, the prevailing theoreti-
cal description of shear thickening is a two-state model
by Wyart and Cates (WC) [19] that interpolates linearly
between frictionless and frictional η divergences as σ is
increased using, as a scalar order parameter, the fraction
of contacts that are frictional. At volume fractions close
to φµJ , η can jump by orders of magnitude (discontinu-
ous shear thickening (DST) [1, 3, 11]) upon minuscule
changes in γ̇; at φ > φµJ , the suspension can even form a
solid-like, shear jammed (SJ) state [14, 20–22] [23].

An important fundamental question is how the nature
of force transmission changes in the presence of stress-
activated particle friction and, specifically, whether direct
contacts constrain both sliding and rolling pairwise mo-
tion. The consequences of constraining particle motion
by sliding (coefficient µs) and rolling (coefficient µr) fric-
tion for the rheology and microscopic dynamics during
DST and SJ remain largely unexplored, despite recent

works that attest to its importance [24, 25].

In this letter, we address this issue directly and demon-
strate the role of constraints numerically by marrying
the physics of both rolling and sliding friction from
dry granular materials with a well-established simula-
tion approach for shear-thickening suspensions [11, 12].
Sketched in Fig. 1 (a) are schematics of pairwise contacts
illustrating hard-sphere (i), sliding (ii), and rolling (iii)
constraints. When particles experience a hard-sphere
constraint only, but no friction, η diverges when Z, the
number of non-rattler contacts per particle [21], equals

its so-called isostatic value Z
{µs=0,µr=0}
iso = 6. This oc-

curs at a specific φ
{µs=0,µr=0}
J [18, 26], which in our 3D

simulation for a bidisperse suspension is ≈ 0.65. The
constraints offered by friction at contact confer enhanced
mechanical stability so that η can diverge for Z < 6 and

φJ < 0.65. For instance, large µs leads to Z
{∞,0}
iso = 4 at

φ
{∞,0}
J ≈ 0.57 [27]. Incorporating both rolling and slid-

ing friction further lowers the limiting number of contacts

to Z
{∞,∞}
iso = D(D+ 1)/(2D− 1) = 2.4 (in 3D) [24] [28],

so that φ
{∞,∞}
J ≈ 0.36 (see Figs. 1 (b) and (c)). This

simple argument already demonstrates that the viscosity
is highly sensitive to the nature of tangential constraints.

Most natural and industrially relevant suspensions,
including cornstarch–water mixtures, an archetypical
shear-thickening suspension, comprise faceted particles
with asperities (and, in some cases, adhesive interactions
originating from surface chemistry) [29–32]. Such fea-
tures lead to interlocking between particle surfaces in-
troducing new physics not describable by sliding fric-
tion alone, suggesting that resistance to rolling is im-
portant. Moreover, in the dry granular literature it has
been shown that a direct consequence of angular particle
shape is hindered particle rotation, and that the rheology
can be reproduced by incorporating rolling friction along
with sliding friction [33, 34]. Meanwhile, in dry tribol-
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FIG. 1. Jamming and constraints. (a) Different types of con-
straint: (i) hard sphere, {µs, µr} = {0, 0}; (ii) infinite slid-
ing friction, {∞, 0}; (iii) infinite sliding and rolling frictions,
{∞,∞}; (b, c) Simulation data for constraints (i) (black di-
amonds); (ii) (blue circles); and (iii) (red squares). (b) Rel-
ative viscosity ηr ≡ η/η0 vs. volume fraction φ. Solid lines

are fits to ηr =
(
1 − φ/φ{µs,µr}

J

)−2
, where φ

{0,0}
J = 0.6477,

φ
{∞,0}
J = 0.5702, and φ

{∞,∞}
J = 0.3648. (c) Contact number

Z (only non-rattler particles) vs. volume fraction φ. Horizon-
tal dashed lines indicate the isostatic conditions Ziso; vertical

dashed lines are φ
{µs,µr}
J used in (b).

ogy adhesive forces between particles are known to re-
sist rolling due to flattening of the contact point [35, 36].
Recent suspension studies have demonstrated that short-
ranged particle-particle interactions such as hydrogen
bonding may similarly not only increase sliding friction
but also introduce a small amount of weak, reversible
adhesion [32, 37]. The latter can lead to stress-activated
rolling friction. Crucially, such suspensions exhibit DST
at φ / 0.45 [29–31, 38, 39], whereas simulations that in-
clude only sliding friction consistently report the lower
bound for DST as φ ≈ 0.56 [14, 16]. This dramatic dis-
crepancy impedes quantitative prediction of experimen-
tal behavior despite recent advances in the field [1].

The physics of stress-activated rolling friction is thus
an attractive candidate to account for the longstanding
disparity between experiments and simulations: it is mi-
cromechanically well-motivated as it captures the effect
of facets, asperities and surface chemistry; it can, on the
grounds of constraint counting, account for the low-φ SJ
observed experimentally; and it is consistent with the
WC model [14, 19, 40][41].

Method: We simulate a bidisperse suspension, an
equal volume fraction mixture of 2000 inertialess spheres
of radii a and 1.4a, suspended in a density-matched New-
tonian fluid of viscosity η0. Under imposed shear stress
σxy (referred to as σ below and described in [21]) the
suspension flows with time-dependent shear rate γ̇(t) in

a 3D Lees–Edwards periodic domain. After omitting the
start-up flow transient (which typically lasts O(1) strain
units) we report ηr ≡ σ/η0〈γ̇〉, where angle brackets im-
ply time average over the steady state. The particles
are subject to Stokes drag and interact through short-
range pairwise hydrodynamic lubrication interactions FH
(see [12]), repulsive forces FR, and contact interactions
FC . The repulsive force acts normally and decays with
interparticle surface separation h over a Debye length λ
as |FR| = F0 exp(−h/λ) (we use λ = 0.01a). This gives
rise to a stress scale σ0 ≡ F0/6πa

2, related by an O(1)
prefactor (which may very weakly depend on λ) to the
crossover from lubricated, frictionless contacts between
particles to direct, frictional ones. The contact interac-
tion is modeled using linear springs [12], incorporating
both sliding and rolling friction using the algorithm de-
scribed by Luding [42]. Contacts obey Coulomb’s friction
law for both sliding and rolling modes: |FC,t| ≤ µs|FC,n|
and |FC,r| ≤ µr|FC,n|. Rolling friction introduces a resis-
tance to motion that is not a force but a torque. Thus,
the rolling friction force |FC,r|, which is proportional to
the relative rolling displacement, is a quasi-force that
does not contribute to the force balance and is calculated
only to compute the rolling torque. Hindered rolling mo-
tion leads to contacting particles that, under compres-
sion, must rotate as a solid body as though glued to each
other. Under tension, meanwhile, contacts simply break.
Further details are available in the Supplemental Mate-
rials [43].

Overview of bulk rheology results: Shown in Fig. 2 (a)
is the relative viscosity ηr as a function of scaled shear
stress σ/σ0 for three combinations of friction coefficients
{µs, µr} at φ = 0.45. Setting µr = 0 at this φ leads
to continuous shear thickening (CST) regardless of the
value of µs, whereas µr > 0 leads to DST as evidenced
by ηr ∝ σ/σ0 (dashed line). Because frictional contacts
are stress-activated (as also assumed by the WC model),
at σ/σ0 � 1, ηr resides on the {0, 0} branch of Fig. 2 (b)
(squares and line). Increasing σ/σ0 at fixed φ, ηr transi-
tions to a frictional branch as direct contacts appear. The
extent of shear thickening is set simply by the position

of φ
{0,0}
J relative to φ

{µs,µr}
J : the more constraints are

added, the lower φJ becomes and the more severe shear
thickening is. Thus incorporating rolling friction recov-
ers the surprisingly low SJ volume fraction φ = 0.45 (for
these parameters) observed experimentally in the case
of suspensions with rough particles [29–31]. Recent the-
ory [24] suggests a generalization of the WC model to re-
flect more selective force transmission due to rolling fric-
tion, causing a wider range of stress over which thickening
occurs. This is consistent with our findings and also the
experimental observations of Hsu et al. [31]. Figure 2 (c)
shows the ratio N1/σ (with N1 ≡ σxx − σyy) of the first
normal stress difference, indicating the reorientation an-
gle of the eigenvectors of the stress, for {µs, µr} = {1, 0}
(squares) and {1, 0.5} (stars) at φ = 0.45. Simulations



3

0.4 0.5 0.6100

102

104

10-1 100 101 102 103
-0.2

-0.1

0

0.1

0.2

10-1 100 101 102 103

/ 0

101

102

103
r

{ ,0}

{ s, r} = {1,0.5}

r  / 0

ϕ

η r

σ/σ0

ηr ∝ σ /σ0

ϕJ

μr μs

(a) (b)

(c) (d)

η r

ϕ

{μs, μr} = {1, 0.5}
{1, 0.5}

{∞, 0} {1, 0}

{0, 0}

σ/σ0

{μs, μr} = {1, 0.5}

N 1
/σ

FIG. 2. Rheology with rolling friction. (a) Viscosity ηr as
a function of shear stress σ/σ0 at φ = 0.45. Weak shear
thickening is observed in simulations with sliding friction only
({µs, µr} = {1, 0} and {∞, 0}), whereas those with rolling
friction ({µs, µr} = {1, 0.5}) display DST (ηr ∝ σ/σ0, dashed
line) at the same φ. (b) ηr divergence with φ for {µs, µr} pairs
in (a). (c) The ratio N1/σ of the first normal stress difference
to the shear stress as a function of σ/σ0 at φ = 0.45. N1/σ
with siding friction only ({µs, µr} = {1, 0}) remains small
and negative, while with rolling friction ({µs, µr} = {1, 0.5})
it turns positive. (d) φJ dependence on sliding µs and rolling
µr friction coefficients. The dashed line is the dependence of
φJ on µs with µr = 0. Solid lines indicate the dependence of
φJ on µr for several values of µs.

without rolling friction exhibit a small, negative N1/σ for
the entire range of σ [12], while simulations with rolling
friction exhibit a sign change to positive values; they
are even larger than the reported result near jamming
without rolling friction [44]. Our results indicate that
the contact network can behave more elastic-like due to
more stable contacts with rolling friction. This is con-
sistent with recent experiments on tunable rough parti-
cles [30, 31] that showed a similar transition in N1 upon
increasing particle roughness.

In Fig. 2 (d), we present a comprehensive map of

φ
{µs,µr}
J , generated by simulating the limit σ/σ0 → ∞

(by setting F0 = 0) for a broad range of µs, µr and
φ, and extracting φJ by fitting the viscosity to ηr =(
1−φ/φ{µs,µr}

J

)−2
. For every value of µs, we observe that

φJ decreases with increasing µr. For the lowest µs = 0.2
simulated here the effect of rolling friction on φJ is rather
modest. With increasing µs the dependence of φJ on µr
becomes stronger and we observe saturation at µr ≥ 1.
Especially interesting is the µs range between 0.5 and 1,
where φJ decreases rapidly as small amounts of rolling
friction come into play. For the case of µs → ∞, the
change in µr from 10−3 to 10 decreases φJ from 0.57 to
0.36. Our results suggest that for suspensions with small
sliding friction coefficient (µs ≤ 0.2) φJ is independent of
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FIG. 3. Comparison with experiments. (a) Experimental data
from [45] (line) for φ = 0.58 and simulation data for φ = 0.56
(symbols) for various combinations of µs and µr. To scale the
experimental results we use F0 = 1.5 nN. (b) Experimental
data from [32] (lines) for φ = 0.54 and simulation data for
φ = 0.56 (symbols). To scale the experimental results we use
F0 = 1 nN and F0 = 0.3 nN for 6m and 0m, respectively.

µr. Meanwhile for particles with higher sliding friction,
µs ≥ 0.35, rolling constraints can drastically affect the
rheological behavior.

Comparison with experiments: Given that the shape
of normalized rheological flow curves as in Fig. 2 (a) is
controlled by φJ as the only free parameter, any {µs,
µr} pair residing on a constant-φJ contour of appropriate
magnitude could fit the experimental data equally well.
Still, there are considerations regarding the magnitude of
µs. To reproduce DST seen in experiments with nomi-
nally smooth spheres, previous simulations [11, 12, 14, 16]
that only constrained sliding required µs ≈ 1. This is a
concern [1, 46], since direct measurements typically re-
port µs / 0.5 [9, 32, 46]. However, from Fig. 2 (d) we find
that an equally good fit should be obtainable by reducing
µs to 0.5 and adding some rolling friction, around 1/10
of µs. We demonstrate this in Fig. 3 (a) for silica spheres
with data from Royer et al. [45], which are reproduced
very well using the pair {µs, µr} = {0.5, 0.07}, at large
stresses possibly even better than by {1, 0} [47]. While
small, this rolling resistance is important to capture the
physics of frictional particle-particle interactions: {0.5,
0} underpredicts the viscosity significantly.

We next consider experiments by James et al. [32], in
which hydrogen bonding between surface-functionalized
PMMA/ITA spheres in an aqueous solvent was shown
to increase the effective interparticle friction (Fig. 3 (b);
we scaled the two curves such that the onset stress for
shear thickening is the same and coincides with the sim-
ulation data, i.e., σ/σ0 = 0.3). When hydrogen bonding
is suppressed by adding 6m urea, the PMMA particles
behave similar to other smooth spheres at comparable φ.
Consequently, the same {0.5, 0.07} pair as in Fig. 3 (a)
reproduces thedata very well (as would have {1, 0}).
Without urea, hydrogen bonding is operative and intro-
duces a measurable ‘stickiness [37] to the contact force.
Figure 3 (b) shows that this additional adhesion can be
modelled well by increasing the rolling resistance from
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= {1, 0.5} and {1, 0} at σ/σ0 = 500. Lines correspond to
c(r) = α exp(−r/ξ). (d) Velocity correlation length ξ/2a with
and without rolling friction, as a function of σ/σ0 for φ = 0.45.

µr = 0.07 to µr = 0.25.

For particles with very rough surfaces that can geo-
metrically interlock a large µs ≈ 1 may be appropriate.
In experiments with such particles, Hsu et al. found that
φJ dropped as low as 0.44 [31]. Figure 2 (d) indicates
that sliding friction by itself cannot produce such small
φJ , implying additional rolling constraints. Indeed, by
dialing up both µs and µr to values near 1 we can closely
mimic the reduction in φJ seen by Hsu et al. [31]

Microstructural behavior: We finally address the mi-
croscopic underpinnings for the differences in the mea-
sured viscosity with and without rolling friction, fo-
cussing on the force network formed by frictional contacts
and the correlation of the fluctuating non-affine velocity.

Figures 4 (a) and (b) compare the stress transmission
patterns with µr = 0 and µr = 0.5 at φ = 0.45. The line
segments indicate frictional contacts. Note that all con-
tact force network structures are transient, continuously
flowing, breaking and re-forming under the bulk shear-
ing motion. The force networks shown in Fig. 4 are for
σ/σ0 = 500, for which ηr differs by almost 2 orders of
magnitude, see Fig. 2 (a). The frictional forces appear as
roughly linear structures (force chains) along the com-
pression axis, i.e., along y = −x [12, 48]. Comparing
Figs. 4(a) and (b), force transmission in the presence of
rolling friction is much more spatially localized and di-
rected than with only sliding friction. Indeed in the for-

mer case the force chains are thicker and darker, carrying
larger force compared to the latter. In the case without
rolling friction, the force chains easily buckle and rear-
range under shear. However, by constraining the rolling
mode buckling is suppressed, so chains can more robustly
prevail under applied stress. Hence, the particles exhibit
less relative movement with respect to their neighbors
and show enhanced correlation.

The velocity correlation quantifies this collective mo-
tion, as used previously for dry granular particles [49].
Here we define it similar to [16]:

c(r) ≡

∑
i

∑
j>i

v̄i · v̄jδ(|rij | − r)∑
i

∑
j>i

δ(|rij | − r)
, (1)

where v̄i and v̄j are the fluctuating velocity vectors that
are averaged over a time interval corresponding to ap-
proximately a single particle displacement due to mean
flow. Figure 4 (c) displays c(r) for σ/σ0 = 500, demon-
strating the enhancement of the velocity correlations in
the case with rolling friction compared to that without
rolling friction. We find that c(r) decays approximately
exponentially with the distance between particle centers
r. The correlation length ξ that can be extracted from
fits of data as in Fig. 4 (c) to c(r) = α exp(−r/ξ) as
a function of stress σ is displayed in Fig. 4 (d). We find
that the correlation length increases with stress, implying
the correlated motion increases with σ, but that sliding
friction alone shows only a very mild increase. On the
other hand, simulations with additional rolling friction
show a significant increase in the correlation length. The
implied difference observed in the rheology due to the en-
hanced collective motion of particles can also be observed
directly in videos based on the simulations (see [43]).

Conclusions: We have studied the rheology of dense
suspensions interacting through short-range lubrication
and contact interactions with stress-activated sliding and
rolling friction. The latter generates a constraint on rel-
ative particle movement that allows us to reproduce ex-
perimental features including φJ < 0.5. Inhibited rolling
means that particles must move or gyrate together as
a temporal (but not permanent) cluster, confirmed by
the enhanced velocity correlation, which is in part re-
sponsible for the increased viscosity. When only sliding
motion is constrained, the load-bearing force chains need
orthogonal support to avoid buckling [50]. By contrast,
constraining both rolling and sliding motions leads to a
more anisotropic force chain structure that can sustain
external loads unaided, leading to a lower jamming point.
The rolling friction in this work is intended to capture any
particle-scale effects that hinder rolling, whether they
originate from physical surface properties such as shape
and roughness [30, 31] or surface chemistry [32]; more so-
phisticated models will be required to make quantitative
predictions for more complex particle shapes [51, 52].
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[9] J. Comtet, G. Chatté, A. Niguès, L. Bocquet, A. Siria,
and A. Colin, Nat. Comm. 8, 15633 (2017).

[10] N. Fernandez, R. Mani, D. Rinaldi, D. Kadau, M. Mos-
quet, H. Lombois-Burger, J. Cayer-Barrioz, H. J. Her-
rmann, N. D. Spencer, and L. Isa, Phys. Rev. Lett. 111,
108301 (2013).

[11] R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Phys.
Rev. Lett. 111, 218301 (2013).

[12] R. Mari, R. Seto, J. F. Morris, and M. M. Denn, J.
Rheol. 58, 1693 (2014).

[13] N. Y. C. Lin, B. M. Guy, M. Hermes, C. Ness, J. Sun,
W. C. K. Poon, and I. Cohen, Phys. Rev. Lett. 115,
228304 (2015).

[14] A. Singh, R. Mari, M. M. Denn, and J. F. Morris, J.
Rheol. 62, 457 (2018).

[15] B. M. Guy, M. Hermes, and W. C. K. Poon, Phys. Rev.
Lett. 115, 088304 (2015).

[16] C. Ness and J. Sun, Soft Matter 12, 914 (2016).
[17] S. Jamali and J. F. Brady, Phys. Rev. Lett. 123, 138002

(2019).
[18] A. J. Liu and S. R. Nagel, Annu. Rev. Condens. Matter

Phys. 1, 347 (2010).
[19] M. Wyart and M. E. Cates, Phys. Rev. Lett. 112, 098302

(2014).
[20] I. R. Peters, S. Majumdar, and H. M. Jaeger, Nature

532, 214 (2016).

[21] R. Seto, A. Singh, B. Chakraborty, M. M. Denn, and
J. F. Morris, Gran. Matt. 21, 82 (2019).

[22] E. Han, N. M. James, and H. M. Jaeger, Phys. Rev.
Lett. 123, 248002 (2019).

[23] SJ is not expected in the absence of static friction [17],
however, as fluid-mediated forces vanish upon cessation
of flow thus restoring a finite viscosity.

[24] R. Mari and R. Seto, Soft Matter 15, 6650 (2019).
[25] J. A. Richards, B. M. Guy, E. Blanco, M. Hermes, G. Poy,

and W. C. Poon, Journal of Rheology 64, 405 (2020).
[26] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,

Phys. Rev. E 68, 011306 (2003).
[27] M. van Hecke, J. Phys. Condens. Matter 22, 033101

(2009).
[28] Glassy systems with covalent bonds also report a limit of

2.4 when bending is constrained [53].
[29] D. Lootens, H. van Damme, Y. Hémar, and P. Hébraud,
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SUPPLEMENTAL MATERIAL FOR “SHEAR THICKENING AND JAMMING OF DENSE
SUSPENSIONS: THE ROLL OF FRICTION”

In this document we provide details about the rolling friction forces used in the simulations.

ROLLING FRICTION

In the simulation scheme used in this article, the particles interact through near-field hydrodynamic interactions
(lubrication), a conservative repulsive force, and frictional contact forces.

In this work, we follow Luding [42] to model the contact forces including sliding and rolling frictions. We assume
two particles having radii ai and aj having U (i) and U (j) as translational and Ω(i) and Ω(j) as rotational velocities,
respectively. The contact force between two particles is active only when overlap δ(i,j) ≡ ai+aj −|ri−rj | is positive.

The normal (volume-excluding) force FC,nor, sliding-friction force FC,slid, sliding-friction torque TC,slid, and rolling-
friction torque TC,roll between the two particles are obtained as:

F
(i,j)
C,nor = knδ

(i,j)nij , (2a)

F
(i,j)
C,slid = ktξ

(i,j) , (2b)

T
(i,j)
C,slid = ainij × F (i,j)

C,slid , (2c)

T
(i,j)
C,roll = aijnij × F (i,j)

C,roll . (2d)

Here, nij ≡ (ri − rj)/|ri − rj | is the unit vector that points from particle j to i, and aij ≡ 2aiaj/(ai + aj) is the

reduced radius. Note that F
(i,j)
C,roll

F
(i,j)
C,roll = krψ

(i,j) , (3)

is a quasi-force, which is used only to compute torque, T
(i,j)
C,roll. The parameters kn, kt and kr are the normal, sliding

and rolling spring constants, respectively.
The spring stretches in sliding ξ(i,j)(t) and rolling ψ(i,j)(t) modes are given by the following integrals of relative

velocities from the time tc when the contact appears:

ξ(i,j)(t) =

∫ t

tc

U
(i,j)
t dt , (4a)

ψ(i,j)(t) =

∫ t

tc

U (i,j)
r dt , (4b)

as long as the sliding and rolling frictions to fulfill Coulomb’s friction laws: |F (i,j)
C,slid| ≤ µs|F (i,j)

C,nor| and |F (i,j)
C,roll| ≤

µr|F (i,j)
C,nor|, with sliding µs and rolling µr friction coefficients. Otherwise, the spring stretches are adjusted to keep

the maximum values of the inequalities (For simplicity, we do not set the dynamic friction coefficients). The normal

U
(i,j)
n , tangential U

(i,j)
t , and rolling U

(i,j)
r relative velocities between two particles i and j are given by:

U (i,j)
n ≡ Pnij (U (j) −U (i)) , (5a)

U
(i,j)
t ≡ P′nij

[
(U (j) −U (i))− (aiΩ

(i) + ajΩ
(j))× nij

]
, (5b)

U (i,j)
r ≡ aij(Ω(i) −Ω(j))× nij , (5c)
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where Pnij
≡ nijnij is the normal projection operator, while P′nij

≡ I−nijnij is the tangential projection operator,
which was introduced previously [12].

Finally, the total contact force and torque are given by:

F
(i,j)
C = F

(i,j)
C,nor + F

(i,j)
C,slid , (6a)

T
(i,j)
C = ainij × FC,slid + aijnij × FC,roll . (6b)

We use spring stiffnesses such that the maximum particle overlaps do not exceed 3% of the particle radius in order to
stay close to the rigid limit [16, 54]. Note that we do not use any dashpot explicitly, but to stabilize the simulation
we make use of lubrication resistance that acts as a dashpot [55].


	Shear thickening and jamming of dense suspensions: the roll of friction 
	Abstract
	 Acknowledgments
	 References
	 Supplemental Material for ``Shear thickening and jamming of dense suspensions: the roll of friction"
	 Rolling Friction


