313 research outputs found

    RILP regulates vacuolar ATPase through interaction with the V1G1 subunit

    Get PDF
    Rab-interacting lysosomal protein (RILP) is a downstream effector of the Rab7 GTPase. GTP-bound Rab7 recruits RILP to endosomal membranes and, together, they control late endocytic traffic, phagosome and autophagosome maturation and are responsible for signaling receptor degradation. We have identified, using different approaches, the V1G1 (officially known as ATP6V1G1) subunit of the vacuolar ATPase (V-ATPase) as a RILP-interacting protein. V1G1 is a component of the peripheral stalk and is fundamental for correct V-ATPase assembly. We show here that RILP regulates the recruitment of V1G1 to late endosomal and lysosomal membranes but also controls V1G1 stability. Indeed, we demonstrate that V1G1 can be ubiquitylated and that RILP is responsible for proteasomal degradation of V1G1. Furthermore, we demonstrate that alterations in V1G1 expression levels impair V-ATPase activity. Thus, our data demonstrate for the first time that RILP regulates the activity of the V-ATPase through its interaction with V1G1. Given the importance of V-ATPase in several cellular processes and human diseases, these data suggest that modulation of RILP activity could be used to control V-ATPase function

    Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate

    Get PDF
    Tomato peels and seeds (TP) are the most abundant canning industry waste actually used to produce biogas. TP is rich in lycopene (lyc) and represent a more sustainable feedstock than tomato fruits actually employed. It was therefore chosen as feedstock together with supercritical CO2 extraction (SFE-CO2) technology to develop a TP-SFE-CO2 biorefinery, topic scarcely investigated. Two TP were tested and although TP-SFE-CO2 parameters were the same, lyc recoveries depended by peel structure changes occurred during pre -SFE-CO2 drying step. Higher moisture (102.7 g kg-1 wet weight) permitted 97 % lyc recovery and gave a water-in-oil emulsion as extract. Mass balance confirmed that lyc isomerisation did not cause lyc losses. After a significant oil extraction, exhaust TP showed a biodegradability 64% higher than the raw one, attributable to fibre structure disruption. The biorefinery proposed (SFE_CO2+anaerobic digestion) determined positive economic revenue (+787.9 \u20ac t-1 TP) on the contrary of the actual TP management

    Continuous Flooding or Alternate Wetting and Drying Differently Affect the Accumulation of Health-Promoting Phytochemicals and Minerals in Rice Brown Grain

    Get PDF
    Climate changes impose adoption of water-saving techniques to improve the sustainability of irrigated rice systems. This study was aimed, by a two-years side-by-side comparison, at verifying the hypothesis whether \u201cAlternate Wetting and Drying\u201d (AWD) affects the concentrations of health-related compounds and minerals in brown grains of three japonica rice (Oryza sativa L.) cvs (\u2018Baldo\u2019, \u2018Gladio\u2019, and \u2018Loto\u2019) usually grown in temperate areas in continuous flooding (CF). Due to the rotational turns in water distribution imposed by local authorities and to the weather behavior, different AWD timing and severity occurred in the two years of the study. AWD induced in both seasons yield losses in \u2018Baldo\u2019 and \u2018Gladio\u2019 but not in \u2018Loto\u2019. In the brown grains of \u2018Loto\u2019, AWD increased the concentrations of total tocols, \u3b3-oryzanol, flavonoids, and the antioxidant activity. AWD affected the concentrations of minerals, particularly increasing copper, cadmium and nickel, and decreasing manganese, arsenic and zinc. In the sensitive cultivars, \u2018Baldo\u2019 and \u2018Gladio\u2019, AWD seems to affect plant yield, rather than for severity of the dry period, for prolonged absence of ponded water that exposes plants to cooler temperatures. The selection of suitable cultivars, like \u2018Loto\u2019, tolerant to AWD-related stresses, could combine environmental, yield-related, and nutritional benefits improving the product quality

    PULEX: Influence of environment radiation background on biochemistry and biology of cultured cells and on their response to genotoxic agents

    Get PDF
    Some years ago we performed two experiments aimed at studying the influence of the background radiation on living matter by exploiting the low radiation background environment in the underground Gran Sasso Laboratory of the INFN. Their results were consistent with the hypothesis that the “normal” background radiation determines an adaptive response, although they cannot be considered conclusive. PULEX-3 (the third experiment of the series) is aimed at comparing the effects of different background radiation environments on metabolism of cultured mammalian cells, with substantial improvements with respect to the preceding ones. The experiment was designed to minimize variabilities, by maintaining two cultures of Chinese hamster V79 cells in exponential growth for up to ten months in the underground Gran Sasso Laboratory (LNGS), while two other cultures were maintained in parallel in a biological laboratory installed at the LNGS outside the tunnel. Exposure due to γ-rays was reduced by a factor of about 10 in the underground laboratory while the Rn concentration was small in both cases. After ten months the cells grown in the underground laboratory, compared to those grown in the external one, exhibited: i) a significantly lower capacity to scavenge reactive oxygen species (ROS), and ii) an increased sensitivity to the mutagenic effect of rays. Since the probability that this finding is due to casual induction of radiosensitive mutants is extremely low, it corroborates the hypothesis that cells grown in a “normal” background radiation environment exhibit an adaptive response when challenged with genotoxic agents, which is lost after many generations in a low background radiation environment

    Isothiocyanates and Glucosinolates from Sisymbrium officinale (L.) Scop. (“the Singers’ Plant”): Isolation and in Vitro Assays on the Somatosensory and Pain Receptor TRPA1 Channel

    Get PDF
    Sisymbrium officinale (L.) Scop. is a wild common plant of the Brassicaceae family. It is known as \u201cthe singers\u2019 plant\u201d for its traditional use in treating aphonia and vocal disability. Despite its wide use in herbal preparations, the molecular mechanism of action of S. officinale extracts is not known. The plant is rich in glucosinolates and isothiocyanates, which are supposed to be its active compounds. Some members of this family, in particular allylisothiocyanate, are strong agonists of the transient receptor potential ankyrine 1 (TRPA1) channel, which is involved in the somatosensory perception of pungency as well as in the nociception pathway of inflammatory pain. This study aims to isolate the glucosinolates and isothiocianates from fresh S. officinale to identify the major components and test their activity in in vitro assays with a cloned TRPA1 channel. Samples of cultivated S. officinale have been extracted and the active compounds isolated by column chromatography, HPLC and PTLC. The main components glucoputranjivin, isopropylisothiocyanate and 2-buthylisothiocianate have been tested on TRPA1. The glucosinolates glucoputranjivin and sinigrin turned out to be inactive, while isopropylisothiocyanate and 2-buthylisothiocyanate are potent agonists of TRPA1, with an EC50 in the range of the high potency natural agonists identified so far for this somatosensory channel

    Trend of sexually transmitted infections during the Covid-19 age. What was the impact of the pandemic and the social distancing measures?

    Get PDF
    Covid-19 pandemic has led to social distancing guidelines andresource allocation with subsequent impairment of sexual healthservices. The impact of such measures and the recommendationsregarding changes of sexual behaviour is a matter of debate

    Assessment of tryptophan, tryptophan ethylester, and melatonin derivatives in red wine by SPE-HPLC-FL and SPE-HPLC-MS methods

    Get PDF
    Melatonin (MEL) is an indoleamine produced mainly by the pineal gland in vertebrates. It plays a significant role in the regulation of circadian rhythms, mitigation of sleeping disorders, and jet lag. This compound is synthetized from tryptophan (TRP) and it has been found in seeds, fruits, and fermented beverages, including wine. Wine is also a source of other tryptophan derivatives, the tryptophan ethylester (TEE) and MEL isomers (MISs), for which the biological properties need to be elucidated. An analytical method for the simultaneous quantification of TRP, TEE, and MEL was developed by a Solid Phase Extraction (SPE) of a preconcentration of wine followed by high performance liquid chromatography (HPLC) analysis either with fluorescence or mass spectrometer detectors. The analytical method showed a relative standard deviation (RSD) lower than 8%, except for TRP (RSD 10.5% in wine). The recovery was higher than 76%. The versatility of SPE preconcentrations allowed for the adequate preconcentration of wine sample as well as detection of low concentrations, an important aspect especially for MEL (detection limit 0.0023 \ub5g/L). The proposed method proved to be suitable for assessing the investigated compounds in some red wine samples, where 74.4-256.2 \ub5g/L and 0.038-0.063 \ub5g/L of TEE and MEL were detected, respectively. Five MISs were also found in wine samples in concentrations up to 1.97 \ub5g/L

    Complete results for five years of GNO solar neutrino observations

    Get PDF
    We report the complete GNO solar neutrino results for the measuring periods GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is [54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6 (incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now terminated after altogether 58 solar exposure runs that were performed between May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9 + 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1 sigma) with errors combined in quadrature. Overall, gallium based solar observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991 through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is [69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual run results is consistent with the hypothesis of a neutrino flux that is constant in time. Implications from the data in particle- and astrophysics are reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P

    The Rab-interacting lysosomal protein (RILP) regulates vacuolar ATPase acting on the V1G1 subunit

    Get PDF
    RILP is a downstream effector of the Rab7 GTPase. GTP-bound Rab7 recruits RILP on endosomal membranes and, together, they control late endocytic traffic, phagosome and autophagosome maturation and are responsible for signaling receptor degradation. We have identified, using different approaches, the V1G1 subunit of the vacuolar ATPase (V-ATPase) as a RILP interacting protein. V1G1 is a component of the peripheral stalk and it is fundamental for correct V-ATPase assembly. We established that RILP regulates the recruitment of V1G1 subunit to late endosomal/lysosomal membranes but also controls V1G1 stability. Indeed, we demonstrated that V1G1 is ubiquitinated and that RILP is responsible for proteasomal degradation of V1G1. Furthermore, we demonstrated that alterations of V1G1 expression levels impair V-ATPase activity. Thus, our data demonstrate for the first time that RILP regulates the activity of the V-ATPase through the interaction with V1G1. Given the importance of V-ATPase in several cellular processes and human diseases, these data suggest that modulation of RILP activity could be used to control V-ATPase function

    RILP regulates vacuolar ATPase through interaction with the V1G1 subunit

    Get PDF
    Erratum for RILP regulates vacuolar ATPase through interaction with the V1G1 subunit. [J Cell Sci. 2014
    • 

    corecore