402 research outputs found

    Nanoparticles modified screen printed electrode for electrochemical determination of COD

    Get PDF
    The Chemical Oxygen Demand (COD) is a parameter widely used to determine organic pollutants in water and is defined as the number of oxygen equivalents necessary to oxidize the organic compounds. The standard method for COD measurement (the dichromate titration) suffers from several inherent drawbacks such as the long time of the process and the consumption of toxic chemicals. Hence, interest is growing towards those methods employing electrochemical oxidation of organic compounds, as they allow to dispense with toxic reagents and above all to perform a continuous determination. In this work a new electrochemical method for COD measurement has been developed based on direct oxidation of organic molecules on suitably modified electrodic surfaces. In particular, we have developed various sensors based on modified working electrode surfaces obtained by electrodepositing copper and/or nickel oxide nanoparticles onto several commercial screen printed electrodes. Glucose was used as the standard compound for COD measurements: C6H12O6 + 6O2 → 6CO2 + 6H2O The metallic nanoparticles catalyze the oxidation of the glucose, as well as of different organic pollutants, and make the detection possible at relatively low potential, also in presence of chloride as interferent. The analytical parameters were optimized and the results obtained highlight how the electrodeposition of different metallic nanoparticles onto several screen printed electrode surfaces can influence the selectivity and sensitivity towards the COD detection in real matrices, via electrochemical method. The results were compared with those obtained by the standard method and showed a good agreement. These findings provide an interesting strategy to obtain a simple, cheap, portable and eventually continuous sensor for COD measurement

    Abeta from APP/PS1 Alzheimer mice hippocampus induced synaptic damage in vivo and in vitro

    Get PDF
    We aim to investigate the effects of Abeta from young APP/PS1 mouse model of Alzheimer`s disease (AD) on the synaptic integrity, as the loss of synapses strongly correlates with cognitive deficits in patients. Plaque-associated abnormal swellings of neuronal processes represent the first indicator of disease development and might compromise neuronal integrity and synaptic function. Here, we examined the synaptic nature of dystrophic neurites, and the reduction of both synapses and vesicles density in presynaptic terminals along with the progressive accumulation of autophagic structures and Abeta within hippocampal synaptosomes during the aging. We analysed both the direct synaptotoxic effect of plaques in the hippocampus of this model and also the repercussion of the soluble (S1) fraction in neuronal cultures. Hippocampal synapses were observed under both optic and electron microscopy. Synapses and vesicle density were quantified in periplaque and control (plaque-free) areas by electron microscopy. Primary neuronal cultures were incubated for 48 hours with 6-month-old APP/PS1 and wild-type S1 fractions. In addition, Abeta immunodepletion was carried out with different anti-Abeta antibodies and the levels of synaptic proteins were measured by Western-blot (WB). Both synapse number and synaptic-vesicles density were significantly decreased in young APP/PS1 mice, close to the Abeta deposits, in several hippocampal layers. Importantly, there was a correlation between the synaptic deficiencies and the distance to plaques, which presented oligomeric forms in their periphery. Some presynaptic elements were abnormally swollen, containing autophagic vesicles. In addition, we found by WB a decrease in several hippocampal synaptic markers as early as 4 months of age in this model, and also in neuronal cultures incubated with S1 fractions. Significantly, the neuronal reduction in VGLUT was reversed after Abeta immunodepletion. Plaque-associated oligomeric Abeta induced an early deleterious effect on synapses that correlates with memory deficits in young APP/PS1 mice. Moreover, soluble Abeta derived from these transgenic mice reduced synaptic protein content in vitro, which was restored after immunodepletion of Abeta species. Therefore, this model produced synaptotoxic Abeta and may represent a valuable tool to test novel treatments to protect synapses as an early therapeutic approach for AD.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Tau Oligomer–Containing Synapse Elimination by Microglia and Astrocytes in Alzheimer Disease

    Get PDF
    Importance: Factors associated with synapse loss beyond amyloid-β plaques and neurofibrillary tangles may more closely correlate with the emergence of cognitive deficits in Alzheimer disease (AD) and be relevant for early therapeutic intervention. // Objective: To investigate whether accumulation of tau oligomers in synapses is associated with excessive synapse elimination by microglia or astrocytes and with cognitive outcomes (dementia vs no dementia [hereinafter termed resilient]) of individuals with equal burdens of AD neuropathologic changes at autopsy. // Design, Setting, and Participants: This cross-sectional postmortem study included 40 human brains from the Massachusetts Alzheimer Disease Research Center Brain Bank with Braak III to IV stages of tau pathology but divergent antemortem cognition (dementia vs resilient) and cognitively normal controls with negligible AD neuropathologic changes. The visual cortex, a region without tau tangle deposition at Braak III to IV stages, was assessed after expansion microscopy to analyze spatial relationships of synapses with microglia and astrocytes. Participants were matched for age, sex, and apolipoprotein E status. Evidence of Lewy bodies, TDP-43 aggregates, or other lesions different from AD neuropathology were exclusion criteria. Tissue was collected from July 1998 to November 2020, and analyses were conducted from February 1, 2022, through May 31, 2023. // Main Outcomes and Measures: Amyloid-β plaques, tau neuropil thread burden, synapse density, tau oligomers in synapses, and internalization of tau oligomer–tagged synapses by microglia and astrocytes were quantitated. Analyses were performed using 1-way analysis of variance for parametric variables and the Kruskal-Wallis test for nonparametric variables; between-group differences were evaluated with Holm-Šídák tests. // Results: Of 40 included participants (mean [SD] age at death, 88 [8] years; 21 [52%] male), 19 had early-stage dementia with Braak stages III to IV, 13 had resilient brains with similar Braak stages III to IV, and 8 had no dementia (Braak stages 0-II). Brains with dementia but not resilient brains had substantial loss of presynaptic (43%), postsynaptic (33%), and colocalized mature synaptic elements (38%) compared with controls and significantly higher percentages of mature synapses internalized by IBA1-positive microglia (mean [SD], 13.3% [3.9%] in dementia vs 2.6% [1.9%] in resilient vs 0.9% [0.5%] in control; P < .001) and by GFAP-positive astrocytes (mean [SD], 17.2% [10.9%] in dementia vs 3.7% [4.0%] in resilient vs 2.7% [1.8%] in control; P = .001). In brains with dementia but not in resilient brains, tau oligomers more often colocalized with synapses, and the proportions of tau oligomer–containing synapses inside microglia (mean [SD] for presynapses, mean [SD], 7.4% [1.8%] in dementia vs 5.1% [1.9%] resilient vs 3.7% [0.8%] control; P = .006; and for postsynapses 11.6% [3.6%] dementia vs 6.8% [1.3%] resilient vs 7.4% [2.5%] control; P = .001) and astrocytes (mean [SD] for presynapses, 7.0% [2.1%] dementia vs 4.3% [2.2%] resilient vs 4.0% [0.7%] control; P = .001; and for postsynapses, 7.9% [2.2%] dementia vs 5.3% [1.8%] resilient vs 3.0% [1.5%] control; P < .001) were significantly increased compared with controls. Those changes in brains with dementia occurred in the absence of tau tangle deposition in visual cortex. // Conclusion and Relevance: The findings from this cross-sectional study suggest that microglia and astrocytes may excessively engulf synapses in brains of individuals with dementia and that the abnormal presence of tau oligomers in synapses may serve as signals for increased glial-mediated synapse elimination and early loss of brain function in AD

    Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis

    Get PDF
    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.Instituto de Salud Carlos III (ISCiii) FEDER funds PI18/01557 and PI18/01556Junta de Andalucia UMA18-FEDERJA-211, P18-RT-2233 and US-126273Spanish Minister of Science and Innovation PID2019-108911RA-100, PID2019-107090RA-I00 and RYC-2017-21879Malaga University B1-2019_07 and B1-2019_0

    Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis

    Get PDF
    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.This study was supported by the Instituto de Salud Carlos III (ISCiii) of Spain, co-financed by the FEDER funds from European Union, through grants PI18/01557 (to AG) and PI18/01556 (to JV); by the Junta de Andalucia Consejería de Economía y Conocimiento through grants UMA18-FEDERJA-211 (to AG), P18-RT-2233 (to AG), and US-1262734 (to JV) co-financed by Programa Operativo FEDER 2014–2020; by the Spanish Minister of Science and Innovation grant PID2019-108911RA-100 (to DB-V), Beatriz Galindo program BAGAL18/00052 (to DB-V) grant PID2019-107090RA-I00 (to IM-G), and Ramon y Cajal Program RYC-2017-21879 (to IM-G); and by the Malaga University grants B1-2019_07 (to ES-M) and B1-2019_06 (to IM-G). MM-O held a predoctoral contract from Malaga University and ES-M a postdoctoral contract (DOC_00251) from Junta de Andalucia

    Multi-aspheric description of the myopic cornea after different refractive treatments and its correlation with corneal higher order aberrations

    Get PDF
    Background: To analyse the asphericity of the anterior corneal surface (ACS) for different diameters, and correlate those values with corneal higher order aberrations (cHOA) before and after myopic treatments with corneal refractive therapy (CRT) for orthokeratology and customized (CL) and standard laser (SL) assisted in situ keratomileusis (LASIK). Setting: Clínica Oftalmológica NovoVisión, Madrid, Spain. Methods: The right eyes of 81 patients (27 in each treatment group), with a mean age of 29.94 ± 7.5 years, were analysed. Corneal videokeratographic data were used to obtain corneal asphericity (Q) for different corneal diameters from 3 to 8 mm and cHOA root mean square (RMS) obtained from Zernike polynomials for a pupil diameter of 6 mm. Results: There were statistically significant differences in asphericity values calculated at different corneal diameters for different refractive treatments and their changes. The difference between asphericity at 3 and 8 mm reference diameters showed statistically significant correlations with spherical-like cHOA that was also significantly increased after all procedures. Conclusions: The shift in corneal asphericity and the differences among different treatment techniques are more evident for the smaller reference diameters. These differences can be much reduced or even masked for a peripheral reference point at 4 mm from centre, which is used by some corneal topographers.MES -Ministry of Education and Science(BD/61768/2009
    corecore