47 research outputs found

    ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group

    Get PDF
    Circulating tumour DNA (ctDNA); Liquid biopsy; Precision medicineDNA tumoral circulant (ctDNA); Biòpsia líquida; Medicina de precisióADN tumoral circulante (ctDNA); Biopsia líquida; Medicina de precisiónCirculating tumour DNA (ctDNA) assays conducted on plasma are rapidly developing a strong evidence base for use in patients with cancer. The European Society for Medical Oncology convened an expert working group to review the analytical and clinical validity and utility of ctDNA assays. For patients with advanced cancer, validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, and may be used in routine clinical practice, provided the limitations of the assays are taken into account. Tissue-based testing remains the preferred test for many cancer patients, due to limitations of ctDNA assays detecting fusion events and copy number changes, although ctDNA assays may be routinely used when faster results will be clinically important, or when tissue biopsies are not possible or inappropriate. Reflex tumour testing should be considered following a non-informative ctDNA result, due to false-negative results with ctDNA testing. In patients treated for early-stage cancers, detection of molecular residual disease or molecular relapse, has high evidence of clinical validity in anticipating future relapse in many cancers. Molecular residual disease/molecular relapse detection cannot be recommended in routine clinical practice, as currently there is no evidence for clinical utility in directing treatment. Additional potential applications of ctDNA assays, under research development and not recommended for routine practice, include identifying patients not responding to therapy with early dynamic changes in ctDNA levels, monitoring therapy for the development of resistance mutations before clinical progression, and in screening asymptomatic people for cancer. Recommendations for reporting of results, future development of ctDNA assays and future clinical research are made.This project was funded by the European Society for Medical Oncology (no grant number)

    Modeling the Prognostic Impact of Circulating Tumor Cells Enumeration in Metastatic Breast Cancer for Clinical Trial Design Simulation

    Get PDF
    Biomarker; Liquid biopsy; Machine learningBiomarcadores; Biopsia líquida; Aprendizaje automáticoBiomarcadors; Biòpsia líquida; Aprenentatge automàticDespite the strong prognostic stratification of circulating tumor cells (CTCs) enumeration in metastatic breast cancer (MBC), current clinical trials usually do not include a baseline CTCs in their design. This study aimed to generate a classifier for CTCs prognostic simulation in existing datasets for hypothesis generation in patients with MBC. A K-nearest neighbor machine learning algorithm was trained on a pooled dataset comprising 2436 individual MBC patients from the European Pooled Analysis Consortium and the MD Anderson Cancer Center to identify patients likely to have CTCs ≥ 5/7 mL blood (StageIVaggressive vs StageIVindolent). The model had a 65.1% accuracy and its prognostic impact resulted in a hazard ratio (HR) of 1.89 (Simulatedaggressive vs SimulatedindolentP < .001), similar to patients with actual CTCs enumeration (HR 2.76; P < .001). The classifier’s performance was then tested on an independent retrospective database comprising 446 consecutive hormone receptor (HR)-positive HER2-negative MBC patients. The model further stratified clinical subgroups usually considered prognostically homogeneous such as patients with bone-only or liver metastases. Bone-only disease classified as Simulatedaggressive had a significantly worse overall survival (OS; P < .0001), while patients with liver metastases classified as Simulatedindolent had a significantly better prognosis (P < .0001). Consistent results were observed for patients who had undergone CTCs enumeration in the pooled population. The differential prognostic impact of endocrine- (ET) and chemotherapy (CT) was explored across the simulated subgroups. No significant differences were observed between ET and CT in the overall population, both in terms of progression-free survival (PFS) and OS. In contrast, a statistically significant difference, favoring CT over ET was observed among Simulatedaggressive patients (HR: 0.62; P = .030 and HR: 0.60; P = .037, respectively, for PFS and OS).The study was supported by Lynn Sage Cancer Research Foundation and the the CRO Aviano 5x1000 2014 per la Ricerca Sanitaria, Cancer Specific Intramural Grant. The funding sources had no role in the study design, data collection, data analysis, interpretation, or writing of the manuscript

    Clinical implications of intratumor heterogeneity : challenges and opportunities

    Get PDF
    In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant adaptability. This ranges from mutual beneficial cooperation between cells, which nurture features such as growth and metastasis, to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic resistance in tumors

    Intersect-then-combine approach: improving the performance of somatic variant calling in whole exome sequencing data using multiple aligners and callers.

    Get PDF
    Bioinformatic analysis of genomic sequencing data to identify somatic mutations in cancer samples is far from achieving the required robustness and standardisation. In this study we generated a whole exome sequencing benchmark dataset using the platinum genome sample NA12878 and developed an intersect-then-combine (ITC) approach to increase the accuracy in calling single nucleotide variants (SNVs) and indels in tumour-normal pairs. We evaluated the effect of alignment, base quality recalibration, mutation caller and filtering on sensitivity and false positive rate. The ITC approach increased the sensitivity up to 17.1%, without increasing the false positive rate per megabase (FPR/Mb) and its validity was confirmed in a set of clinical samples

    O direito tradicional hindu: análise de um sistema jurídico integral

    Get PDF
    TCC(graduação) - Universidade Federal de Santa Catarina. Centro de Ciências Jurídicas. Direito.O eixo teórico desta pesquisa está na análise dos elementos jurídicos que se pode extrair das fontes da tradição hindu, sobretudo através de suas escrituras de escopo legal, conhecidas como Smritis, da qual a mais conhecida no ocidente foram As Leis de Manu. Esta cultura jurídica foi tomada em sua singularidade, e não como tela de projeção para os conceitos do direito ocidental. Destinou-se, principalmente, muitos capítulos a análise das principais categorias teóricas e os fundamentos do raciocínio indiano em temas como organização social, administração da justiça e certos tópicos de direito material, como os 18 títulos legais ou vyavaharapadas. Deu-se um destaque ao sistema de varnas e ashramas, que é tido pelos próprios tratados de direito hindu, os dharmashastras, como o principal eixo normativo da sociedade védica. Por fim, também se trabalhou com as concepções hindus de processo, sobretudo na figura do vyavahara, espécie de procedimento legal, e mesmo alguns elementos punitivos da justiça tradicional hindu, como danda e prayascitta, as punições e penitências. Deste modo, desenhou-se um quadro axiológico e topográfico do direito na tradição hindu, privilegiando uma visão de sistema sobre as especificidades da hermenêutica oriental, sem insistir tanto em casuísticas de direito material

    The temporal mutational and immune tumour microenvironment remodelling of HER2-negative primary breast cancers

    Get PDF
    Càncer de mama; Genòmica del càncer; Biomarcadors tumoralsCáncer de mama; Genómica del cáncer; Biomarcadores tumoralesBreast cancer; Cancer genomics; Tumour biomarkersThe biology of breast cancer response to neoadjuvant therapy is underrepresented in the literature and provides a window-of-opportunity to explore the genomic and microenvironment modulation of tumours exposed to therapy. Here, we characterised the mutational, gene expression, pathway enrichment and tumour-infiltrating lymphocytes (TILs) dynamics across different timepoints of 35 HER2-negative primary breast cancer patients receiving neoadjuvant eribulin therapy (SOLTI-1007 NEOERIBULIN-NCT01669252). Whole-exome data (N = 88 samples) generated mutational profiles and candidate neoantigens and were analysed along with RNA-Nanostring 545-gene expression (N = 96 samples) and stromal TILs (N = 105 samples). Tumour mutation burden varied across patients at baseline but not across the sampling timepoints for each patient. Mutational signatures were not always conserved across tumours. There was a trend towards higher odds of response and less hazard to relapse when the percentage of subclonal mutations was low, suggesting that more homogenous tumours might have better responses to neoadjuvant therapy. Few driver mutations (5.1%) generated putative neoantigens. Mutation and neoantigen load were positively correlated (R2 = 0.94, p = <0.001); neoantigen load was weakly correlated with stromal TILs (R2 = 0.16, p = 0.02). An enrichment in pathways linked to immune infiltration and reduced programmed cell death expression were seen after 12 weeks of eribulin in good responders. VEGF was downregulated over time in the good responder group and FABP5, an inductor of epithelial mesenchymal transition (EMT), was upregulated in cases that recurred (p < 0.05). Mutational heterogeneity, subclonal architecture and the improvement of immune microenvironment along with remodelling of hypoxia and EMT may influence the response to neoadjuvant treatment.This work was supported by Cancer Research UK. L.D.M.A. was partly funded by Spanish Association against cancer

    The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer

    Get PDF
    TCR repertoire; Breast cancer; Clade mutationsRepertori TCR; Càncer de mama; Mutacions cladeRepertorio TCR; Cáncer de mama; Mutaciones cladoThe detailed molecular characterization of lethal cancers is a prerequisite to understanding resistance to therapy and escape from cancer immunoediting. We performed extensive multi-platform profiling of multi-regional metastases in autopsies from 10 patients with therapy-resistant breast cancer. The integrated genomic and immune landscapes show that metastases propagate and evolve as communities of clones, reveal their predicted neo-antigen landscapes, and show that they can accumulate HLA loss of heterozygosity (LOH). The data further identify variable tumor microenvironments and reveal, through analyses of T cell receptor repertoires, that adaptive immune responses appear to co-evolve with the metastatic genomes. These findings reveal in fine detail the landscapes of lethal metastatic breast cancer

    The temporal mutational and immune tumour microenvironment remodelling of HER2-negative primary breast cancers.

    Get PDF
    The biology of breast cancer response to neoadjuvant therapy is underrepresented in the literature and provides a window-of-opportunity to explore the genomic and microenvironment modulation of tumours exposed to therapy. Here, we characterised the mutational, gene expression, pathway enrichment and tumour-infiltrating lymphocytes (TILs) dynamics across different timepoints of 35 HER2-negative primary breast cancer patients receiving neoadjuvant eribulin therapy (SOLTI-1007 NEOERIBULIN-NCT01669252). Whole-exome data (N = 88 samples) generated mutational profiles and candidate neoantigens and were analysed along with RNA-Nanostring 545-gene expression (N = 96 samples) and stromal TILs (N = 105 samples). Tumour mutation burden varied across patients at baseline but not across the sampling timepoints for each patient. Mutational signatures were not always conserved across tumours. There was a trend towards higher odds of response and less hazard to relapse when the percentage of subclonal mutations was low, suggesting that more homogenous tumours might have better responses to neoadjuvant therapy. Few driver mutations (5.1%) generated putative neoantigens. Mutation and neoantigen load were positively correlated (R2 = 0.94, p = 2 = 0.16, p = 0.02). An enrichment in pathways linked to immune infiltration and reduced programmed cell death expression were seen after 12 weeks of eribulin in good responders. VEGF was downregulated over time in the good responder group and FABP5, an inductor of epithelial mesenchymal transition (EMT), was upregulated in cases that recurred (p < 0.05). Mutational heterogeneity, subclonal architecture and the improvement of immune microenvironment along with remodelling of hypoxia and EMT may influence the response to neoadjuvant treatment
    corecore