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REVIEW

Clinical implications of intratumor heterogeneity:
challenges and opportunities

Abstract
In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this
phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive
phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant
adaptability. This ranges frommutual beneficial cooperation between cells, which nurture features such as growth andmetastasis,
to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia
or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor
cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such
tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic
resistance in tumors.
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Background

Malignant tumors have highly diverse phenotypic and molec-
ular characteristics both at the intertumor and intratumor
levels [1]. Intertumor heterogeneity (also known as interlesion

heterogeneity) refers to the differences found between tumors
in different patients. Intratumor heterogeneity (also known as
intralesion heterogeneity) refers to distinct tumor cell popula-
tions (with different molecular and phenotypical profiles)
within the same tumor specimen [1].
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Cancer is typically defined as a genetic disease driven
by oncogenic mutations. In a similar gene-centric view,
intratumoral heterogeneity has traditionally been attribut-
ed to genetic diversity within cancer cell populations.
However, recent evidence suggests that a tumor is hetero-
geneous in almost every discernible phenotypic trait as
the result of not only genetic influences but also non-
genetic sources of variability [2]. These non-genetic influ-
ences shape the phenotypic states of cancer cells at the
proteome level. These factors are the primary determi-
nants of the identity of most cell types in healthy tissue,
given that most cells, while phenotypically different,
share the same genetic load.

Tumor heterogeneity is associated with poor prognosis
and outcome [3–6]. It is thought that intratumor heteroge-
neity is one of the leading determinants of therapeutic
resistance and treatment failure and one of the main rea-
sons for poor overall survival in cancer patients with met-
astatic disease [1, 7]. Tumors are composed of mosaics of
cancer cells with different characteristics and varying sen-
sitivities to anticancer therapies. Tumor heterogeneity has
differential layers of complexity. Because cancer is a het-
erogeneous dynamic target, individual patients, lesions,
and cell populations should be thoroughly characterized
at varying times. Tumor heterogeneity has presented a
considerable challenge to matching patients with the right
treatment at the right time; therefore, it poses a challenge
to accomplish the goals of precision medicine [8, 9].

It has been shown that most of the targets considered as
druggable and for which Food and Drug Administration
(FDA)-approved therapeutics are available are not
expressed in a uniform or homogeneous manner in tumor
tissue. Examples include the variable threshold of positiv-
ity for the expression of the HER2 receptor in gastric
adenocarcinoma [10], progesterone and estrogen receptors
in breast tumors [11], the EML4-ALK translocation in
lung adenocarcinoma [12], B-RAF mutations in melano-
ma, and the 1p/19q allelic loss in oligodendrogliomas [13,
14]. This variability means that many patients undergo
specific therapeutic regimens in situations where perhaps
only 10% of the studied tumor cells are positive for the
corresponding target. Thus, targeted therapies in heteroge-
neous neoplasms lead to transient tumor regression and
subsequent selective outgrowth of existing resistant pop-
ulations, leading to recurrence in the long run.

In the following sections, we discuss intratumor hetero-
geneity and in particular how this is driven at the genetic
level and in relation to the microenvironment, and how
this translates into specific phenotypes at the functional
level. Finally, we discuss research approaches needed to
advance our understanding of this complex biological
phenomenon and how this can lead to novel therapeutic
approaches.

Phenotypic heterogeneity: the particular case
of morphologic heterogeneity

Every tumor is unique as a result of its interactions with the host
and the genetic and epigenetic variability. This results in impor-
tant differences between tumors from different individuals,
named as intertumoral heterogeneity. At this level, we recog-
nize more than 250 types of tumors with distinctive clinical-
pathological characteristics and that show most of them also
peculiar pathological characteristics. In most of these tumor
types, dozens or hundreds of pathological variants are observed.
In such variability of tumors and, therefore, of types of cancer,
factors such as the location and the cell type are determinant.

Neoplastic lesions are diagnosed primarily based on patho-
logical examination, both gross and microscopic, but the infor-
mation obtained may not always be conclusive for a diagnosis
of malignancy. In this context, intratumoral heterogeneity
poses an unresolved problem. Most carcinomas, sarcomas,
and astrocytomas display extensive intratumoral morphologi-
cal variability that, if not taken into account, can lead to an
inaccurate or even incorrect diagnosis. For example, analysis
of complete specimens of lung adenocarcinoma often reveals
more than one morphological pattern (acinar, solid, lipid, pap-
illary, micropapillary, mucinous, or pleomorphic) (Fig. 1) [15],
and accurate assessment is critical for the right diagnosis and
prognosis. Therefore, diagnosis based on morphology requires
extensive areas of the tumor to be examined to ensure an ob-
jective, genuinely representative snapshot of the heterogeneity
within the tumor as a whole. State-of-the-art digital image ac-
quisition and quantification algorithms, which integrate bio-
physical parameters to capture the spatial variation in tumor
architectures, are likely to play an essential role in this [16].

In many malignant tumors, it is common to find well-
differentiated areas adjacent to poorly or moderately differen-
tiated areas. Attempts are currently being made to quantify
these areas and grade tumors, generally according to the
least-differentiated area or the area with the highest degree
of cytologic malignancy [17, 18]. This intratumoral differen-
tiation is often patchy, and not well defined in molecular
terms. It reproduces the development patterns and
morphofunctional specialization present in the tissue where
cancer originated and can lead to differences in the expression
of some of the therapeutic targets and, therefore, the response
to a specific treatment [10, 19–21]. One of the most charac-
teristic examples is EGFR-driven lung adenocarcinoma in non
small-cell lung cancer (NSCLC), as there have been cases of
resistance associatedwith conversion to small-cell lung cancer
(SCLC) phenotype after long-term treatment with EGFR ty-
rosine kinase inhibitors [22].

Similarly, the observation of specific morphologic patterns
in human tumors has made it possible to identify distinct ge-
netic changes. For example, characteristic chromosomal trans-
locations have been identified in round cell desmoplastic

162 J Mol Med (2020) 98:161–177



tumors, clear cell sarcoma, synovial sarcoma, and rhabdoid
tumors [23, 24]. Nevertheless, not all oncogenic changes are
diagnostic determinants of a specific tumor type or give rise to
the emergence of a specific morphologic pattern. Researchers
from the National Research Tomsk State University [25] have
shown that the morphological heterogeneity in invasive
micropapillary carcinoma (IMPC) of the breast is not related
to the presence of specific chromosomal aberrations. This het-
erogeneity responds to specific gene expression profiles, thus
pointing to the existence of other determinants of intratumor
morphological heterogeneity and highlighting the importance
of context. Furthermore, some of the most commonmolecular
alterations have been associated with tumors whose morpho-
logical characteristics are strikingly distinct.

Molecular heterogeneity: a genomic substrate
for both tumor biology and evolution

During the 1990s, and after the discovery of oncogenes, it was
thought that specific genetic changes would account for tumor

heterogeneity and the emergence of an eventual phenotype of
resistance to many conventional treatments.

Nevertheless, the puzzle and variability of cancer pa-
thology are made tremendously complicated at the geno-
mic level by the vast number of DNA changes, with thou-
sands of known translocations and more than 1500 muta-
tions, deletions, and amplifications reported to date [8,
26–29]. Also noteworthy is the complex world of
microRNAs (miRNAs), of which there are thousands de-
scribed (www.mirbase.org) and which can act like
oncogenes or tumor suppressors (oncomiRs and tumor
suppressor miRs) [30, 31], and the unknown role of long
non-coding RNA (lncRNA), numbering as many as 60,000
loci in the human genome [32–34]. Importantly, there are
many nonspecific genetic alterations in human tumors. For
example, the ETV6-NTRK3 translocation can be detected
in very different types of tumors such as infantile fibrosar-
coma, cellular mesoblastic nephroma, and secretory carci-
noma of the breast [35]. Chromosomal translocations such
as those including the ALK gene are demonstrated in ana-
p l a s t i c l ymphoma , l ung adenoca r c i noma , and
myofibroblastic tumors [36], and the translocation
EWSR1-CREB1 in tumors as different as clear cell sarco-
ma and angiomatoid fibrous histiocytoma [37]. BRAF mu-
tations and translocations have been described in
melanocytic nevi, malignant melanoma, colon adenocarci-
noma, glioblastoma and pilocytic astrocytoma [38, 39] and
EGFR mutations, amplifications in lung adenocarcinoma
and brain tumors [40–42].

Although some molecular alterations are recurrent in some
tumors, not all the tumors of the same type, and similar mor-
phology, show the same genetic profile. In fact, there is a huge
intertumoral heterogeneity between tumors with the same his-
tology in different individuals. This heterogeneity poses a
problem when trying to standardize a therapy in a specific
tumor type, requiring a personalized approach based on the
particular genetic alterations of the tumor, to improve the re-
sponse rates to the treatment.

Moreover, initial studies have shown that a character-
istic morphological pattern could be due to specific onco-
genic changes and that malignancy is dependent on the
immune response [43]. For example, primary cells with
RAS, NEU, mutated p53, MYC, and the viral gene E1A
oncogenes injected into athymic mice [43] form different
morphological patterns in melanoma [17]. In this sense,
the first point to underline would be that the presence of
different morphological patterns within the same tumor
suggests the coexistence of various clones, each subject
to specific genetic changes or different environmental
pressures that are not necessarily shared by clones present
in other areas.

Critically, this genetic variability is also thought to occur
extensively within a tumor (Fig. 1). Therefore, the goal of

Fig. 1 Lung cancer intratumoral heterogeneity at morphological and
molecular levels. a Paraffin section of a lung tumor biopsy showing
three main morphological subtypes within the same tumor. b Molecular
and biomarker analysis confirming heterogeneity in EGFR mutation and
in the c transcriptional signature of these three subtypes
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preparing selective oncograms with chemotherapy drugs and
other inhibitors has become complicated—almost impossi-
ble—following conventional strategies. Intratumor molecular
heterogeneity, and more specifically that occurring
intratumorally, is thought to account for the unsuccessful at-
tempts of pharmacologic and radiologic cancer treatments. In
fact, in cell lines, a correlation has previously been shown
between resistance to radiotherapy and cytotoxic drugs (e.g.,
cisplatin, doxorubicin, and taxanes) and the expression of spe-
cific oncogenes, principally, RAS, p53, c-MYC, and the ade-
noviral gene E1A [44–47].

Causes of molecular heterogeneity

There are a lot of redundant genetic alterations in cellular
and biological pathways. These pathways can be grouped
into specific “hallmarks” or basic principles that rational-
ize tumor biology and that are altered in the vast majority
of malignant neoplasms [48, 49]. Authors have postulated

that the most important aspect of tumor transformation
and subsequent progression is the functional alteration of
at least ten major biochemical pathways. Given that phe-
notypes generated by changes in genetic material are the
substrate of clonal development and selection and adapta-
tion to the microenvironment for each of these pathways
(e.g., insensitivity to apoptosis, self-sufficiency in cell
proliferation, acquisition of so-called replicative immor-
tality), several significant genetic changes must occur
(Fig. 2) [62]. A representative example can be seen in
signaling in the Ras/MAPK and PTEN/PI3K/AKT axes
in lung adenocarcinomas, where specific mutations, am-
plifications, gene expression, and translocations in mem-
brane receptors, as in other genes downstream, can enable
the tumor cell hallmark of uncontrolled proliferation [60,
63].

This concept can be extrapolated to other significant path-
ways, whose number is expected to grow to 15–20 in the
coming years [49]. Although “single hit pathways” are

Fig. 2 Clonal cooperation and
cellular consortium. a Darwinian
model of clonal heterogeneity
resulting in a consortium of
clones, each with their
characteristics and malignant
features. b Cooperation between
several clones to invade and
metastasize
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reported, disruptions of several pathways are necessary for a
cell to become malignant. Moreover, a similar biological ef-
fect can be achieved by hitting a particular biochemical path-
way at different points, often driven by the inherent genetic
instability of a tumor, thus making cancer an extremely het-
erogeneous (and redundant) disease at the molecular level [54,
64, 65] (Fig. 1).

Understanding the role of genomic instability
as an enabling characteristic of cancer

Despite claims in recent models that only three driver muta-
tions are required for the development of various forms of
advanced cancer [66, 67], the number of molecular changes
necessary to enable the emergence of a clinically relevant
tumor has, for some time, been assumed to be higher than
previously thought, given standard mutation rates in any cell
type. This observation is supported by the large number of
somatic mutations and epigenetic alterations found in most
tumor specimens (in the order of thousands), which points to
the existence of molecular mechanisms that enable the muta-
tional landscape of cancer cells to expand. Therefore, to ex-
plain the substantial molecular variability inherent to malig-
nant tumors, there must be a background of replicative im-
mortality and genomic instability, which is associated with
abnormalities in DNA repair mechanisms and maintenance
of genetic and chromosomal integrity (see review [68]).
Chromosome instability (CIN) and microsatellite instability
(MSI) have been described as two alternative pathways to
cancer [53, 69, 70].

Epigenetic heterogeneity

Genetically identical cell populations can display remarkable
morphological diversity. One mechanism by which different
environmental stimuli drive such heterogeneity is by epige-
netic modifications of the genome, which can persist over
many cell divisions [61]. Therefore, within what we under-
stand as molecular heterogeneity, regional differences in epi-
genetic status have been observed in different types of cancer
that can act, in much the same way as genetic alterations, as
drivers of the tumor process. For example, in colon adenocar-
cinomas, a subtype harbors a relevant profile of epigenetic
alterations [64]; this is also seen in urological [65] and other
tumors [57, 58, 71]. Moreover, local hypoxia may induce the
expression of histone demethylases and other epigenetic mod-
ifiers that subsequently modulate the expression of genes
linked to a specific phenotype (e.g., leading to epithelial to
mesenchymal transition). Inflammatory cytokines are another
example, released by stromal or immune cells, which can alter
DNA methylation and other epigenetic markers.

Many of these regional epigenetic differences are associat-
ed with an aberrant methylation pattern in specific promoters
or other regulatory elements causing either gene activation or
silencing [59, 72–77], which may also be predictive of the
phylogenetic relationships between the different clones in tu-
mors such as prostate cancer [78]. Therefore, we can deduce
that genomic and epigenomic diversity are not mutually ex-
clusive but can be explained by a unified evolutionary pro-
cess, giving rise to more robust evolutionary models than
clonal relationships inferred from genetic or epigenetic
datasets alone. A summary of main molecular events related
with intratumoral heterogeneity is shown in Table 1.

Proteomic heterogeneity: going beyond the genome

If the genetic diversity of constitutive alterations in DNA is
enormous, then at the level of the proteome, this diversity
increases exponentially. Given that proteins are the final effec-
tors of all cellular pathways, along with small metabolites, it
seems reasonable to think that the “ideal” targets for therapy
are those protein factors that have the most stable expression
and activation in tumor cells. Therefore, it is essential to con-
sider the proteomic heterogeneity of tumors.

Even in tumors with constitutive genetic activation of
EGFR and HER2, the underlying pathways are not perma-
nently and homogeneously active in all cells [79–83]. At pres-
ent, approaches such as multispectral imaging of multiple pro-
teins from a common signaling pathway allow the accessible,
multiplexed elucidation of proteomic heterogeneity at the lev-
el of signal transduction [84]. Moreover, proteomic heteroge-
neity is not always a simple consequence of the heterogeneity
found at the genetic level. In fact, it may be affected by the
microenvironment and stress situations such as starving or
hypoxia [62, 85].

Much attention has been paid to the role of the molecular
pathways controlling RNA splicing [86, 87], the impact of the
expression of various protein isoforms, and how the local
environmental factors determine their levels [88]. However,
protein synthesis machinery and other translation regulators
are also significantly modulated by local environmental con-
ditions. Control of protein synthesis (and preceded immedi-
ately by regulation of transcription) is considered one of the
leading post-transcriptional mechanisms for control of gene
expression. This control is profoundly altered in cancer [56].

Alterations in the expression and activity of specific trans-
lation factors and their inhibition by cellular stress conditions
(e.g. hypoxia or lack of nutrients through various pathways)
are common to most human tumors (especially in advanced
stages) [56]. The tumor takes control of translation by various
mechanisms to cover the demands associated with high pro-
liferation rates or to promote translation of specific messen-
gers that are favorable to tumor progression (survival, pro-
angiogenic, invasion, and metastasis) (reviewed in [89]).
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Biological interactions among distinct tumor
clones and the microenvironment: the stroma
may have a significant impact on phenotypic
heterogeneity

Twenty years ago, we published the first histopathologic
evaluation of whether differentiation in squamous cell car-
cinoma could be related to the components of the stroma
[90]. After previous studies by Dotto and Weinberg [91],
who observed that normal fibroblasts could inhibit the
growth of RAS-transformed keratinocytes in athymic
mice, we observed that coinjection of normal fibroblasts
together with RAS-transformed keratinocytes induced be-
nign or low-grade malignant squamous lesions with ex-
tensive areas of keratinization that were observable by
morphology, by immunohistochemistry, and by electron
microscopy [90]. Subsequently, it was concluded that this
fibroblast-mediated differentiation was secondary to fac-
tors such as signaling by transforming growth factor beta
(TGF-β).

Years of research have shown that the peritumoral stro-
ma in many malignant tumors play an important role and

can secrete factors associated with poor prognosis (e.g.,
chemokines secreted by tumor-associated histiocytes,
macrophages or fibroblasts [the so-called cancer-associat-
ed fibroblasts]). Signatures of released stromal factors
have been thought to affect progression and tumor differ-
entiation, as well as invasiveness in adenocarcinomas
[92–95]. Therefore, the importance of the surrounding
stroma in intratumoral morphologic heterogeneity seems
evident, both regarding factors released by fibroblasts and
factors released by inflammatory cells such as histiocytes
and lymphocytes. Accordingly, tumor multifocality has
been postulated as being associated with the underlying
stroma [96]. Morphological and genetic heterogeneity is
the result of a multistep process of tumorigenesis that
leads to subclonal tumor cell populations with distinct
traits, according to current paradigms [2, 5, 8, 21]. The
model we present herein incorporates complementary the-
ories of tumor evolution such as the big bang model or the
cancer stem cell hypothesis [97] (Fig. 2). It is increasingly
clear that understanding alterations within tumor cells is
only part of the picture, and we need to understand inter-
actions between tumors and their microenvironment to

Table 1 Table summarizing the aspects highlighted in this review correlating with the key molecular events related with intratumoral heterogeneity

Key points Bibliography

1. Phenotypic heterogeneity 1.1. Hundreds of tumor types and thousands of subtypes Jamal-Hanjani et al. (2015) [1]

1.2. Different degree of cell differentiation (low-grade and
high-grade tumor types)

Park et al. (2010) [18] Zhou et al. (2015) [17]

1.3. Morphologic pattern association with genetic changes Sequist et al. (2011) [22] Nielsen et al. (2015) [24] Zack
et al. (2013) [26]

1.4. Morphological heterogeneity in metastasis vs. primary
tumor

Maddipati et al. (2015) [50] Hong et al. (2015) [51]

2. Molecular heterogeneity 2.1. Intratumor heterogeneity and resistance to treatments Dagogo-Jack and Shaw (2018) [52]

2.2. Different types of molecular changes in coding genes JamalHanjani et al. (2017) [7] Sharma and Debinski
(2018) [41] Karachaliou et al. (2015) [40]2.2.1 SNV

2.2.2 Insertions and Deletions

2.2.3 Copy number variation

2.2.4 Rearrangements (i.e translocations) Skoulidis and Heymach (2019) [42]

2.3. Genomic Instability (CIN and MSI) Dagogo-Jack and Shaw (2018) [52] Andor et al. (2016)
[53]

2.4. Molecular and biochemical redundancy in the several
pathways altered in malignant cells

Logue and Morrison (2012) [54]

2.5. Heterogeneity at genomic level is not always related with
heterogeneity at proteomic level

Ramon Y Cajal S et al. (2017) [55] Ramon Y Cajal S
et al. (2018) [56]

3. Epigenetic heterogeneity 3.1 Different changes (histone modifications, DNA
methylation) on the genome associated with gene
silencing / gene activation

Kumar et al. (2018) [57] Dong et al. (2017) [58] Bhawal
et al. (2007) [59]

3.2. Deregulation of gene expression (overexpression or
inhibition)

Agarwal R et al. (2017) [60]

3.2.1 conding genes: mRNAs

3.2.2 non-coding RNAs: miRNAs, lncRNAs Raychaudhuri et al. (2012) [33] Eriksen et al. (2016)
[31] Ramon y Cajal et al.(2019) [34]

3.3. Associated and associated with the microenvironment Assenov et al. (2018) [61] Yuan Y (2016) [62]
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account for multiple aspects of tumor progression and
therapeutic resilience [55, 98–100].

In this regard, the concept of cancer as a consortium of
clones and local factors has been proposed [101]. The concept
of clonal cooperation is based on a single clone being unable
to acquire all the necessary properties to be an invasive tumor,
such that various clones must act synergistically and comple-
mentarily to acquire the characteristics described by Hanahan
and Weinberg [49] and the proposed biochemical changes in
10 or more cellular biochemical pathways. This cell coopera-
tion can be observed in cell clusters in metastatic develop-
ment: clusters of circulating tumor cells (CTCs) are associated
with higher number of metastases than single circulating cells
in models of breast cancer, pancreatic cancer, and melanoma
[50, 51, 102–106]. Moreover, our group made an effort to
generate MDA-MB-231 breast cancer cell lines single clones
and demonstrated that the clonal cooperation confers aggres-
siveness and tumor progression [106].

The microenvironment plays a role in the adoption of phe-
notypes that may be clinically relevant and are contingent
upon the implementation of metabolic gene expression pro-
grams and, as such, can be completely independent of the
acquisition of new drivers. One of the most explicit examples
is the well-known role of the HIF family of transcription fac-
tors, which, under hypoxic conditions, trigger a set of adaptive
transcriptional responses (tumor angiogenesis, cell
metabolism, invasion, survival, therapeutic resistance, and
even differentiation and self-renewal) and seem to play a crit-
ical role in tumor progression [107].

How to address tumor heterogeneity
in a clinical setting

Intratumor heterogeneity (and its genetic and non-genetic de-
terminants) is a dynamic phenomenon that is observed at mul-
tiple levels, and that follows amainly Darwinian-type progres-
sion, although it is far more complicated than previously
thought. Unpredictable and often chaotic cellular reactions
depending on oncogenic alterations and environmental factors
drive tumor progression and hold the key to interpreting tumor
development. This concept is essential because the decisions
made during a patient’s treatment are based on the study of
biopsy specimens of the primary tumor by pathologists and
usually revolve around the oncogenic drivers known at the
time of diagnosis [2] (Fig. 3). Given the complex and constant
development of tumor architecture, it is essential to under-
stand that molecular changes (both genetic and epigenetic)
within the tumor itself evolve during disease progression
andmetastasis [108]. Therefore, the biopsy of a primary tumor
is not necessarily predictive of what happens in secondary
deposits [2]. In addition, chemotherapy and radiotherapy can
trigger selection of resistant clones [2, 109, 110], induce new

mutations and other genetic and chromosomal rearrangements
[21, 111], recover functionality of previously inactivated
genes whose potential had been exploited in synthetic lethal
interactions [112], activate cellular dedifferentiation and
transdifferentiation programs [97], and even potentiate the de-
velopment of specific populations by non–cell-autonomous
mechanisms [113]. Thus, it is the adoption of both genetic
and non-genetic subclonal changes that endows cancer with
enough phenotypical plasticity to adapt to microenvironmen-
tal pressures and successfully overcome the barriers posed by
antitumoral therapy. Otherwise, dissecting tumor heterogene-
ity involves emerging strategies such as multiregional se-
quencing, analysis of autopsy samples, single-cell sequencing,
and longitudinal analysis of liquid biopsy samples [52]. Rapid
research autopsy of cancer patients can explain heterogeneity
processes including cancer evolution and acquired therapeutic
resistance [114–119].

Numerous studies have shown how genetic variants
emerge after therapy and suggest that resistance and response
to therapy from that moment onwards are commonly deter-
mined by genetic variants (see [8] and references therein). For
example, in colon adenocarcinoma, highly sensitive tech-
niques and application of anti-EGFR therapy have made it
possible to detect up to 70% of Ras mutations in blood in
series where the percentage diagnosed in the primary tumor
was approximately 40–45% based on standard molecular
techniques [120]. This is also true for non-small cell lung
cancer and EGFR mutations [40]. In this sense, therapy has
been considered both a source of variability and a selective
filter, promoting the acquisition of new mutations and the
selective proliferation of previously dormant, minority clones
[21, 121].

Given that the strategy of targeting cancer-initiating muta-
tions has been applied with limited success [122], we believe
that better comprehension of the determinants of tumor het-
erogeneity is needed (especially in intratumor terms).
Pathologists have the responsibility to make a correct and
verifiable diagnosis, from their examination of tissue samples,
taking into consideration all the variables that underlie
intratumoral heterogeneity. Tumor progression assessment
would ideally analyze at least two samples to compare the
biologic markers relevant for progression in both tumor cell
clones and the microenvironment. The tumor clone markers
include those involved in the tumorigenic expansion
(proliferation) and invasion, the two leading forces driving
progression. The tumor microenvironment analysis focuses
the attention on the qualities that potentiate clonal expansion
and invasion of tumor cells. In essence, tumor progression
analysis must concentrate on clonal heterogeneity and over-
come the problems it presents.

One important aspect is how representative biopsies re-
flects the overall tumor histology and biology. Core biopsies
often only reflect a spatiotemporal snapshot of the whole
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tumor and are therefore unlikely to be fully informative about
the clonal composition [123–129]. The size of the sample is
another critical issue [130–132], and signal-to-noise ratios
need to be balanced. One way to achieve this balance is isolate
by microdissection multiple relatively small regions of tumors
that more likely represent the balance of morphologically dis-
tinct units. The importance of such approach is highlighted by
the observation of clustered populations within a tumor that
differ in gene expression [133], as well as genetic composition
[134]. However, unless large numbers of samples are provided
for each tumor, this approach can easily fail to identify patches
of genetically distinct cells [130–132]. On the other hand,
larger samples, or pools of samples, lead to intermixing of
small anatomically distinct units, which provides additional
challenges in relation to distinguish distinct functional hetero-
geneity. Multiple solid biopsy samples should be taken based
on data obtained through imaging and nuclear medicine, with
the selection of the biopsied area relying increasingly on
criteria such as particular metabolic activity. It is also essential
to bear in mind that microenvironmental factors such as hyp-
oxia and inflammatory infiltrate can induce changes in the
protein expression of therapeutic targets and condition the
response to antitumor agents. Therefore, we must select the
most representative areas for massive parallel sequencing and
genomic and proteomic studies and report on their limitations.

The histopathological diagnosis should integrate molecular
analysis (genome sequencing, transcriptome profiling) and

protein expression profiling (especially analyses including
next-generation sequencing (NGS) techniques) and be able
to include gene signatures that are characteristic of a different
prognosis or clinical treatment [55, 70, 92, 94, 130, 135–137]
(Fig. 3). The incorporation of NGS and the development of
new resources for the analysis of these big data, combining
molecular and expression signatures, are becoming crucial for
diagnosis [13, 138]. The field of radiogenomics, which corre-
lates genomic data with the radiological features of the tu-
mors, must also be taken into account [139, 140]. While this
approach based on artificial intelligence may be interesting for
the differential diagnosis of radiological features, we under-
stand that genomic information from a single sample is not
necessarily representative of the whole tumor and its hetero-
geneity. While procuring multiple metastatic tumor samples
for genomic studies through NGS and development of patient-
derived xenografts or organoids, mechanistic insights gained
from research autopsy studies of cancer patients can help iden-
tify new targets for therapeutic intervention [114]. In collabo-
ration with Cambridge CRUK, our group has performed ex-
tensive multi-platform profiling of metastases in 10 warm au-
topsies of patients with lethal multi-therapy-resistant breast
cancers (DNA sequencing, RNA sequencing, the T cell recep-
tor (TCR) sequencing, and immunohistochemistry (IHC)) of
multiple individual metastases (range 5–36 metastases per
case, 182 individual metastases to 22 organ sites). This col-
lection allowed us to characterize the mutational and copy

Fig. 3 Cancer biology-driven personalized medicine. Schematic representation of the clinical workflow for lung cancer diagnosis, treatment, and follow-
up
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number aberration (CNA) landscapes across the individual
metastasis, to infer the clonal ancestries of metastases, to as-
sess the TME in each individual metastasis, to characterize the
predicted neo-antigens, and to assess the TCR repertoires
across metastases, providing an unprecedented molecular
characterization of lethal breast cancers that had been subject-
ed to multiple lines of systemic therapies [119].

Finally, one of the most powerful techniques is the study of
tumor heterogeneity at the cellular level. This approach, called
single-cell sequencing, is based on the isolation of dozens of
cells in different areas of the tumor, and the study of various
Multi(omics) over them [141, 142]. For example, DNA se-
quencing after gene amplification can allow the study of mu-
tations, amplifications, deletions, and translocations in various
areas of the tumor, thus characterizing the homogeneity of
these genetic alterations [141, 143, 144]. Expression studies
are also done, both at the RNA level (RNA-Seq) and epige-
netics with methyloma sequencing [143, 145, 146]. These
studies, nowadays, can be expensive and tedious in time as
well as in their interpretation, but are already showing results
of high clinical interest; for example, the identification of het-
erogeneity of mutations of the PIK3CA gene in breast cancer
with HER2 amplification where the authors describe that
PIK13A and HER2 are not always present in the same cells
and that chemotherapy selected the cells with mutant PIK3CA
[111]. It is an example of the importance of studying
intratumoral molecular heterogeneity and where single-cell
sequencing technology can be decisive.

How do we envision cancer research
and treatment in the coming years?

(1) To assess intratumoral heterogeneity of tumors efficient-
ly, it is essential to systematically integrate molecular
patterns, protein expression, and morphology into the
fuller context of all clinical and pathological information
available (Fig. 3). We have proposed the term
tissunomics, whereby a diagnosis is individually
assessed based upon a combined picture derived from
the clinical, pathological, molecular, and protein expres-
sion data of the tumor and its surrounding microenviron-
ment [55]. Importantly, molecular diagnosis based on
small samples and genetic alterations can lead to a false
negative diagnosis or treatment due to genetic and epi-
genetic changes present in a small subset of tumor cells.
In addition, tumor type and location has been shown to
underlie unpredictable treatment responses targeting the
same molecular pathway, such as the tumor response in
melanomas vs. colon carcinomas with BRAF mutations.
More conclusive data from basket trials and umbrella
trials are needed [55].

Every effort should be made to form multidisciplinary
teams involving radiologists, nuclear medicine specialists, pa-
thologists, oncologists, systems biologists, molecular biolo-
gists, and data scientists. Tumors must be analyzed at the
genetic, molecular, and clinical-radiological level, with inte-
gration and correlation of findings to ensure a holistic
approach.

(2) To overcome tumor heterogeneity, research should be
directed towards the search for central nodes, funnel fac-
tors, master regulator genes, and non-oncogene addic-
tions [122, 147–149], in an attempt to confer therapeutic
sensitivity. Regarding drug development in malignant
tumors and current paradigms in cancer research, new
agents include those that target cancer-related vulnerabil-
ities in receptor tyrosine kinases and intracellular signal-
ing pathways, epigenetics, metabolism, and nuclear-
cytoplasmic transport, among others. The study of the
tumor immune microenvironment appears quite promis-
ing and includes treatment with immune checkpoint an-
tibodies, with programmed death 1 (PD-1 and PDL-1)
targeted agents, and novel immunotherapies. It is likely
that combinations will be needed for most subtypes.
Recent studies in solid cancers have highlighted the pres-
ence and relevance of immune heterogeneity and that
intratumor heterogeneity may also influence the anti-
tumor immune responses [150–152].

Several studies [153–160] have shown that the ex-
pression of factors such as 4EBP1 and EIF4E is diffuse
in most solid tumors and glioblastomas and is associated
with lower survival and poorer prognosis. We proposed
the concept of funnel factors [80], that is, factors that
channel crucial information on tumor progression inde-
pendently of the level at which a specific oncogenic al-
teration occurs. These factors, which play a significant
role in the control of protein synthesis, could be sensitive
tumor targets in a large number of malignant tumors [79,
83, 161, 162].

Complex models that implement combinatorial therapy
are likely to be particularly beneficial in tumors with a
high degree of tumor heterogeneity. In this broad context,
evolutionary clues and new findings on interclonal rela-
tionships should also be taken into account [81, 101, 113,
163]. The identification of factors involved in this inter-
play between malignant clones, which mediate tumor
growth and metastasis, may be one promising approach
in the understanding of cancer [101]. Therefore, studies
carried out from the perspective of systems biology [149],
tailored towards the identification of hubs or other central
factors in this complicated tangle of biochemical networks
responsible for maintaining the tumorigenic state, will be
fundamental in the identification of addictions and
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vulnerabilities in cancer that would otherwise be difficult
to imagine [147, 164].

(3) Liquid biopsies. Difficulties in obtaining tumor tissue
using invasive surgical procedures have led to the devel-
opment of liquid biopsies for several cancer types
[165–184]. They comprise tumor-derived nucleic acids
(e.g., circulating cell-free tumor DNA [ctDNA],
microRNA), circulating tumor cells (CTCs), and
tumor-derived extracellular vesicles that accumulate in
the blood, cerebrospinal fluid (CSF), urine, saliva, and
other fluids [165, 178, 185–191]. One advantage of liq-
uid biopsies is that it significantly reduces the problem of
spatial heterogeneity. Several studies, comparing blood
and tissue biopsies, have confirmed that this approach
has high specificity, although variable sensitivity is re-
ported. Another important advantage (although under
certain situations it may be a disadvantage) is that it tends
to reflect an aggregate of the output (ctDNA/CTC etc.)
potentially from both primary and various metastatic
sites. Such complex tumor heterogeneity cannot be eval-
uated by a single core tumor needle biopsy [192].

However, the most clinically advanced approach is ctDNA
from plasma which closely matches the gene profile of tumor
tissue biopsies. Plasma ctDNA provides tumor-derived mate-
rial to identify actionable genomic alterations, monitor treat-
ment responses, predict progression of the tumor before clin-
ical or radiological confirmation, and can identify mecha-
nisms of resistance also during therapy [173, 174, 176, 193,
194]. For a comprehensive review, see [195].

Prospective clinical studies using liquid biopsies have
characterized and monitored over time the genomic al-
terations of patients [40, 174]. Recently, the TRACERx
consortium [7, 196] investigated tumor heterogeneity
and evolution in early-stage NSCLC and showed the
prognostic value of copy-number heterogeneity assess-
ment in tumor biopsies and circulating tumor DNA de-
tection in plasma. However, these liquid biopsy results
reflect a kind of summary of tumor burden, regardless
of the origin of the tumor cells (from primary or meta-
static deposits), and require some degree of by-pass of
microanatomical boundaries (vascular basement mem-
brane and stromal invasion) by either active tumor in-
vasion or passive external damage (e.g., ischemic or
inflammatory). In this context, some caution should be
taken for the evaluation of early epithelial neoplasms.

The role of subclonal driver events in response to ther-
apy and disease recurrence and progression remains to be
determined. The use of liquid biopsies may pave the way
for a more detailed, real-time patient-tracking approach
allowing the modification of therapeutic strategies
throughout the disease.

(4) Artificial intelligence. Intratumor heterogeneity is one of
the main reasons for the lack of diagnostic reproducibil-
ity between pathologists given the complexity of the mi-
croscopic interpretation of certain tumors. Furthermore,
many biomarkers do not have an established interpreta-
tion algorithm. It is critical to improve existing algo-
rithms for the quantification of immunohistochemical
and other in situ biomarkers. The development of artifi-
cial intelligence algorithms with automatic learning
(“deep learning”) is already shaping the field. Deep
learning methodology, with the generation of thousands
of clinical-pathological diagnostic cases, can promote
the development of algorithms based on this methodolo-
gy that could represent a breakthrough in the pathologi-
cal diagnosis As an example, Google released
TensorFlow, an algorithmic development framework
for distributed computing, to the general scientific and
technical community. This open-source machine learn-
ing tool is free for any qualified scientist and is special-
ized in cognitive computing.

With this approach, software is being developed by many
startups and educational institutions as well as big companies
such as Google, Phillips and Leica Microsoft. Algorithm-
related applications for primary diagnosis, intraoperative di-
agnosis, training, quantification of immunohistochemistry, or
diagnostic consultation are likely to progress significantly
over the next few years. Notably, there have been several
claims that the accuracy and reliability of diagnoses based
on neural network systems is very high [197, 198].
Examples have been published for skin cancer (both melano-
ma and squamous cell carcinoma), lung adenocarcinoma, gli-
oma, gastric carcinoma, and others [135, 199–202].

Moreover, the deep learning tumor prediction heat map can
be quite complementary to pathologists’ “workflow.” An al-
gorithm can detect, for example, metastatic carcinoma in
lymph nodes, or tumor budding in the colon or cervix, and
help to recognize histologic patterns associated with higher
malignant grades in gliomas [203], and moreover, can score
the degree of malignancy in tumors such a prostate adenocar-
cinomas where quantification of the histological patterns are
underway [197, 198].

These algorithms are likely to help pathologists in reaching
a faster, more accurate diagnosis and significantly reduce the
pathologist-dependent discordance in histopathological
diagnosis.

(5) As a final reflection, we firmly believe that research strat-
egies should be optimized. At present, most research
teams are small, self-managed groups. Consequently, re-
search is slow, and financial and human resources are not
optimized. We must establish more rational and ambi-
tious organizational models and strategies, with real
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networks and professional, well-trained teams. As
Horning recently said [204], “science and technology
are at an inflection point with convergence—the integra-
tion of life sciences, physical sciences, mathematics, en-
gineering, and information technology—poised to make
significant progress”. We must look forward and not for-
get that our primary objective is to cure cancer or at least
make it a chronic disease. Such a social commitment
requires us to search for all possible methods of cooper-
ation among those involved in the diagnosis and treat-
ment of cancer.
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