6,805 research outputs found

    Studies in the synthesis of tetracyclines

    Get PDF
    Imperial Users onl

    Non-equilibrium fluctuations in a driven stochastic Lorentz gas

    Full text link
    We study the stationary state of a one-dimensional kinetic model where a probe particle is driven by an external field E and collides, elastically or inelastically, with a bath of particles at temperature T. We focus on the stationary distribution of the velocity of the particle, and of two estimates of the total entropy production \Delta s_tot. One is the entropy production of the medium \Delta s_m, which is equal to the energy exchanged with the scatterers, divided by a parameter \theta, coinciding with the particle temperature at E=0. The other is the work W done by the external field, again rescaled by \theta. At small E, a good collapse of the two distributions is found: in this case the two quantities also verify the Fluctuation Relation (FR), indicating that both are good approximations of \Delta s_tot. Differently, for large values of E, the fluctuations of W violate the FR, while \Delta s_m still verifies it.Comment: 6 pages, 4 figure

    Interface pinning and slow ordering kinetics on infinitely ramified fractal structures

    Full text link
    We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non conserved order parameter on an infinitely ramified (deterministic) fractal lattice employing two alternative methods: the auxiliary field approach and a numerical method of integration of the equations of evolution. In the first case the domain size evolves with time as L(t)∼t1/dwL(t)\sim t^{1/d_w}, where dwd_w is the anomalous random walk exponent associated with the fractal and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power law growth is identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the simulations performed on a two dimensional Sierpinski Carpet indicate that, after an initial stage dominated by a curvature reduction mechanism \`a la Allen-Cahn, the system enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack of translational invariance determines a rough free energy landscape, the existence of many metastable minima and the suppression of the marginally stable modes, which in translationally invariant systems lead to power law growth and self similar patterns. On fractal structures as the temperature vanishes the evolution is frozen, since only thermally activated processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure

    Dynamics of Fluid Mixtures in Nanospaces

    Full text link
    A multicomponent extension of our recent theory of simple fluids [ U.M.B. Marconi and S. Melchionna, Journal of Chemical Physics, 131, 014105 (2009) ] is proposed to describe miscible and immiscible liquid mixtures under inhomogeneous, non steady conditions typical of confined fluid flows. We first derive from a microscopic level the evolution equations of the phase space distribution function of each component in terms of a set of self consistent fields, representing both body forces and viscous forces (forces dependent on the density distributions in the fluid and on the velocity distributions). Secondly, we solve numerically the resulting governing equations by means of the Lattice Boltzmann method whose implementation contains novel features with respect to existing approaches. Our model incorporates hydrodynamic flow, diffusion, surface tension, and the possibility for global and local viscosity variations. We validate our model by studying the bulk viscosity dependence of the mixture on concentration, packing fraction and size ratio. Finally we consider inhomogeneous systems and study the dynamics of mixtures in slits of molecular thickness and relate structural and flow properties.Comment: 16 pages, 8 figure

    Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes

    Get PDF
    Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them

    Conservation tillage mitigates the negative effect of landscape simplification on biological control

    Get PDF
    Biological pest control is a key ecosystem service, and it depends on multiple factors acting from the local to the landscape scale. However, the effects of soil management on biological control and its potential interaction with landscape are still poorly understood. In a field exclusion experiment, we explored the relative effect of tillage system (conservation vs. conventional tillage) on aphid biological control in 15 pairs of winter cereal fields (barley and wheat) selected along a gradient of landscape complexity. We sampled the abundance of the main natural enemy guilds, and we evaluated their relative contribution to aphid predation and parasitism. Conservation tillage was found to support more abundant predator communities and higher aphid predation (16% higher than in the fields managed under conventional tillage). In particular, both the abundance and the aphid predation of vegetation- and ground-dwelling arthropods were increased under conservation tillage conditions. Conservation tillage also increased the parasitism rate of aphids. A high proportion of semi-natural habitats in the landscape enhanced both aphid parasitism and predation by vegetation-dwelling organisms but only in the fields managed under conventional tillage. The better local habitat quality provided by conservation tillage may compensate for a low-quality landscape. Synthesis and applications. Our study stresses the importance of considering both soil management and landscape composition when planning strategies to maximize biological control services in agro-ecosystems, highlighting the role played by conservation tillage in supporting natural enemy communities. In simple landscapes, the adoption of conservation tillage will locally improve biological control provided by both predators and parasitoids mitigating the negative effects of landscape simplification. Moreover, considering the small scale at which both predation and parasitism responded to landscape composition, a successful strategy to improve biological control would be to establish a fine mosaic of crop and non-crop areas such as hedgerows, tree lines and small semi-natural habitat patches

    Multiple time-scale approach for a system of Brownian particles in a non-uniform temperature field

    Get PDF
    The Smoluchowsky equation for a system of interacting Brownian particles in a temperature gradient is derived from the Kramers equation by means of a multiple time-scale method. The interparticle interactions are assumed to be represented by a mean-field description. We present numerical results that compare well with the theoretical prediction together with an extensive discussion on the prescription of the Langevin equation in overdamped systems.Comment: 8 pages, 2 figure

    Aumento da resistência mecanica a penetração em função da perda natural de umidade no solo.

    Get PDF
    Nosso objetivo foi verificar a variação de umidade e sua interferência sobre a resistência mecânica a penetração em um latossolo amarelo disrófico (Lad) sobre relevo plano em área de pastagem, sob condições de clima Amazônico, através de modelo estatísticos de regressão polinomial de 2º grau

    Ultrafast nonlinear optical response of Dirac fermions in graphene

    Get PDF
    The speed of solid-state electronic devices, determined by the temporal dynamics of charge carriers, could potentially reach unprecedented petahertz frequencies through direct manipulation by optical fields, consisting in a million-fold increase from state-of-the-art technology. In graphene, charge carrier manipulation is facilitated by exceptionally strong coupling to optical fields, from which stems an important back-action of photoexcited carriers. Here we investigate the instantaneous response of graphene to ultrafast optical fields, elucidating the role of hot carriers on sub-100 fs timescales. The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.Peer ReviewedPostprint (published version

    Particle acoustic detection in gravitational wave aluminum resonant antennas

    Get PDF
    The results on cosmic rays detected by the gravitational antenna NAUTILUS have motivated an experiment (RAP) based on a suspended cylindrical bar, which is made of the same aluminum alloy as NAUTILUS and is exposed to a high energy electron beam. Mechanical vibrations originate from the local thermal expansion caused by warming up due to the energy lost by particles crossing the material. The aim of the experiment is to measure the amplitude of the fundamental longitudinal vibration at different temperatures. We report on the results obtained down to a temperature of about 4 K, which agree at the level of about 10% with the predictions of the model describing the underlying physical process.Comment: RAP experiment, 16 pages, 7 figure
    • …
    corecore