124 research outputs found

    Some bounds and limits in the theory of Riemann's zeta function

    Get PDF
    For any real a>0 we determine the supremum of the real \sigma\ such that \zeta(\sigma+it) = a for some real t. For 0 1 the results turn out to be quite different.} We also determine the supremum E of the real parts of the `turning points', that is points \sigma+it where a curve Im \zeta(\sigma+it) = 0 has a vertical tangent. This supremum E (also considered by Titchmarsh) coincides with the supremum of the real \sigma\ such that \zeta'(\sigma+it) = 0 for some real t. We find a surprising connection between the three indicated problems: \zeta(s) = 1, \zeta'(s) = 0 and turning points of \zeta(s). The almost extremal values for these three problems appear to be located at approximately the same height.Comment: 28 pages 1 figur

    Algorithms for determining integer complexity

    Full text link
    We present three algorithms to compute the complexity n\Vert n\Vert of all natural numbers nN n\le N. The first of them is a brute force algorithm, computing all these complexities in time O(N2)O(N^2) and space O(Nlog2N)O(N\log^2 N). The main problem of this algorithm is the time needed for the computation. In 2008 there appeared three independent solutions to this problem: V. V. Srinivas and B. R. Shankar [11], M. N. Fuller [7], and J. Arias de Reyna and J. van de Lune [3]. All three are very similar. Only [11] gives an estimation of the performance of its algorithm, proving that the algorithm computes the complexities in time O(N1+β)O(N^{1+\beta}), where 1+β=log3/log21.5849631+\beta =\log3/\log2\approx1.584963. The other two algorithms, presented in [7] and [3], were very similar but both superior to the one in [11]. In Section 2 we present a version of these algorithms and in Section 4 it is shown that they run in time O(Nα)O(N^\alpha) and space O(NloglogN)O(N\log\log N). (Here α=1.230175\alpha = 1.230175). In Section 2 we present the algorithm of [7] and [3]. The main advantage of this algorithm with respect to that in [11] is the definition of kMax in Section 2.7. This explains the difference in performance from O(N1+β)O(N^{1+\beta}) to O(Nα)O(N^\alpha). In Section 3 we present a detailed description a space-improved algorithm of Fuller and in Section 5 we prove that it runs in time O(Nα)O(N^\alpha) and space O(N(1+β)/2loglogN)O(N^{(1+\beta)/2}\log\log N), where α=1.230175\alpha=1.230175 and (1+β)/20.792481(1+\beta)/2\approx0.792481.Comment: 21 pages. v2: We improved the computations to get a better bound for $\alpha

    On the exact location of the non-trivial zeros of Riemann's zeta function

    Get PDF
    In this paper we introduce the real valued real analytic function kappa(t) implicitly defined by exp(2 pi i kappa(t)) = -exp(-2 i theta(t)) * (zeta'(1/2-it)/zeta'(1/2+it)) and kappa(0)=-1/2. (where theta(t) is the function appearing in the known formula zeta(1/2+it)= Z(t) * e^{-i theta(t)}). By studying the equation kappa(t) = n (without making any unproved hypotheses), we will show that (and how) this function is closely related to the (exact) position of the zeros of Riemann's zeta(s) and zeta'(s). Assuming the Riemann hypothesis and the simplicity of the zeros of zeta(s), it will follow that the ordinate of the zero 1/2 + i gamma_n of zeta(s) will be the unique solution to the equation kappa(t) = n.Comment: 28 pages, 9 figures. Added a referenc

    On the distribution of a specific number theoretical sequence

    Get PDF

    Some inequalities involving riemann's zeta-function

    Get PDF

    Some theorems concerning the number theoretical functions (n) and (n)

    Get PDF

    On the convergence of some irregularly oscillating series

    Get PDF
    corecore