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Some theon~ms concerning the number theorectical functions w(n) and Q(n) *) 

J. van de Lune 

Abstract 

The functions wand Qare defined as follows: w(I) = Q(I) = 0 and if 

el e2 er 
n = p 1 Pz •••Pr is the canonical factorization of the natural number n, 

then w(n) ==rand Q(n) = e 1 + e 2 + ••• + e. It is known that l (-l)Q(n)= 
r n~x 

= o(x), (x-:,-oo). There seems to be no corresponding result in the literature 

for w(n). In this report it is shown that I< (-I)w(n) = o(x), (x-+oo), Fur­
n_x ( ) 

thermore, it is shown that the series 1:=I (-I)w n /n converges to zero. 

Finally, the remarkable duality relation 

= I 
d/n 

and some of its consequences are discussed. 

*) ' . f . . . f bl' . . 1 This paper 1.s not or review; it is meant or pu ication in a JOurna • 
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Introduction. As usual, let w(n) denote the number of distinct prime 

divisors and Q(n) the total number of prime divisors of the positive 

integer n. That is, w(l) = Q(l) = 0 and if 

is the canonical factorization of n, then w(n) =rand Q(n) = e 1+e2+ ••• +er. 

It is known [1, p. 123], [4, II, p. 617], [5, p. 74] that 

l (-l)Q(n) = o(x), 
n~x 

(x + ~). 

There seems to be no corresponding result in the literature for w(n). In 

this report we will prove that 

S(x) d~f l (-l)w(n) = o(x), 
n<x 

We will also establish the convergence of 

I 
n=l 

(-l)w(n) 
n 

(x + oo). 

and show that the sum of this series is zero. For the corresponding result 

for Q(n) see [4, pp. 617-621]. The above results can be sharpened con­

siderably, but we will not take the effort here to do so. 

Finally we will prove a remarkable duality relation between wand Q 

and discuss some of its consequences. 

I. Proposition 1.1. The function 

00 

¢(s) d~f l 
n=l 

(-I)w(n) 

s n 



2 

which is obviously analytic for Res= cr > I, has an analytic continuation 

up to cr > I. 

Proof. From the definition of w(n) it follows inm1ediately that for cr > I 

Thus 

00 

¢Cs)= I 
n=1 s 

n 

~(s)¢(s) = n-­
P I 

s 
p 

TT (I 
p 

I ------s 2s 
p p 

• 11(1 --1-) = 
p s 

p -I 

... ) , (p prime) . 

Since ps - I has all its zeros on the imaginary axis, it follows that P(s) 

is analytic for o > ~- Furthennore, it is well-known that ~ls) is analytic 

for o > I and it follows that 

I 
,~ (s) = ~(s) . P(s) 

is also analytic for o > I. This completes the proof. D 

THEOREM I.I. S(x) def I (-l)w(n) = o(x), 
n,;,X 

(x • oo). 

Before proving this theorem we state the following special version 

of the well known [2, p. 124] WIENER-IKEHARA Tauberian theorem: Let F(x) 

be non-negative and non-decreasing for x 2:. 0. 

Let 

f CX) -sx 
f(s) = e F(x)dx 

0 

converge for o > I. If f(s) is analytic for o > 1, except for a simple pole 

at s = I with residue A, then 



lim F(x) = A. 
X x• 00 e 

Proof of' Theorem 1.1. Note that 

I + (-I)w(n) ~ 0 for n = 1,2,3, .... 

Hence F(x) d~f [x] + S(x) is a non-negative, non-decreasing function not 

exceeding 2x. It follows that for cr > I, 

00 (-I) w (n) 
;; (s) + Hs) I I + 

= = s n=l n 
00 f00 

x-sdF(x) = I F(n) - F(n-1) = = s n=l n 1-0 

-s 

I ~-0 + s I: -s-1 = x F (x) F(x)x dx = 

Joo Joo -s-1 -s X 
= s 1 F(x)x dx = s O e ~(e )dx. 

Thus 

(cr > I). 

Recall that ;;(s) is a meromorphic function with only one simple pole at 

s = I with residue A= I. From Proposition I.I it now follows that the 

function 

;;(s) + cp(s) 
s s-1 

is analytic for cr > I. Now, applying the WIENER-IKEHARA theorem, we obtain 

A= 
F(ex) 

= lim ---'--- = 
X 

e 

lim F(x) = 
X 

3 
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Thus, 

= lim [x] + S(x) = 
X 

I + 1 . S (x) 
1.m --. 

X 

lim S(x) = 0 or S(x) = o(x) 
X 

and this proves the theorem. D 

THEOREM 1.2 .. The series 

CX) 

I 
n=l 

(-l) w (n) 

n 

converges and its sum is zero. 

Before proving this theorem we state the following well known result 

[I, p. 124]. 

Let 
CX) 

g(s) = I 
n=l 

a(n) 
s 

n 

be absolutely convergent for a> 0 and suppose that g(s) is analytic for 

a~ 0. 

If in addition, a(n) = o(l), then 

CX) 

l a(n) 
n=l 

converges and its sum is g(O). 

Proof of Theorem 1.2. Define 

a(n) 
(-l) w (n) 

= -=-~--
n 



Then we have 

g(s) = 
; (-l)w(n) = 
l s+l 

n=l n 
<l>(s+l). 

Since ~(s) is analytic for cr > 1, we see that g(s) is analytic for cr > 0, 

and it follows that the series appearing in theorem 1.2 converges. 

Moreover, 

g(O) = <1>(1) = lim P(s) = 0 
s+l r; (s) 

and the theorem is proved. 0 

Remark. Actually, ~(s) has a zero of order 2 at s = 1 because, 

lim <l>(s) 
2 s+l (s-1) 

= lim { 1 
s+l (s-1) r; (s) 

= 4 log 2. TT (1 -
p>3 

TT 
p>3 

I 2) fa 0. 
(p-1) 

Note by contrast that the corresponding function 

I (-l)n(n) = 

n=l ns 

r; (2s) 
r; (s) 

only has a simple zero at s = 1. 

5 
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2. From their definitions it is hardly to be expected that there is much 

of a relation between w(n) and Q(n). However, we will exhibit below a re­

markable duality relation between the two functions and discuss some of 

its consequences. 

We first note that [3, p. 355] 

w(n) = O( log n ) 
log log n' 

from which it is easily seen that if Res= a> 1 then 

00 

I 
n=l 

w(n) 
z 

s n 

is an entire function of z. Also, for a> I and lzl < 2°, it is clear that 

00 Q(n) 
I _z __ = TT (1 

s p 

2 
+~+-z-+ 

s 2s 
••• ) = TT ---2 .... 

p 
n=l n p p 

is an analytic function of z. 

THEOREM 2.1. If lz] < 2° and a> I then 

00 

(2. I) < I 
n=l 

w(n) 
z ) 

s n 

00 

< I 
n=l 

(1-z)Q(n) 
s ) = r;; (s). 

n 

f>l>oof. 

00 w(n) 
I z TT (1 + ~ + _z_ + _z_ + ... ) = = s p s 2s 3s 

n=l n p p p 
1 
s s 

= TT ( I + z p ) ;::: TT p + z -
p 1 

1 p s 1 p -
s 

p 

s 
p 

1 



and 

00 (1-z) SI (n) 2 3 
I ( 1 1-z (1-z) (1-z) ... ) = TT + -- + + + = 

n=l s p s 2s 3s n p p p 

1-z 

P.s s 
= TT ( 1 + ) = TT 

p 

p 1-z p s --- p + z - 1 s 
p 

Hence 

00 w(n) 
< I z ) 
n=l ns 

00 

< I 
n=l 

(1-z) SI (n) 
s ) = 

n 

s s 
nF + z - p 

1'; (s) = TT = TT = 
p s 1 pp s 1 p 1 - _I p - + z - s p 

and the theorem follows easily. D 

Performing Dirichlet multiplication in (2.1), equating coefficients 

and changing z into I - z we obtain: 

I 
SI (E.) 

zw(d) (1-z) d = I 
n w(-) 

zSl(d)(l-z) d 
d/n d In 

a remarkable duality relation between wand SI. 

We now study the analytic continuation of 

00 

g <s) <l~f I 
z 

n=l 

w(n) z 
---, (z fixed, cr > I) 

s 
n 

as· a function of s. We first have 

Proposition 2.1. If 11-zl < 2 and cr > I then 

= 1 , 

7 
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log p 
(2.2) 

g' (s) 
z 

g (s) 
z 

r;'(s) \' 
= z r;(s) + z(z-1) l ------

p (ps+z-I)(ps-1) 

(where all derivatives are taken with respect to s). 

Proof. From (2.1) we obtain 

which can be written as 

1-z +-+ 
s p 

2 
(1-z) 

2s p 

s 
g (s) = r;(s) • TT P + z - 1 

z p s p 

Taking logarithmic derivatives, we find 

g' (s) r;' (s) s z = + I < :e 

+ ••• ) = r; (s) , 

- t)log p = g (s) 
z r;(s) p s p + z - I 

r;' (s) 
+ I - z log p = = r; (s) s p p + z -

r;, (s) 
+ I ( - z 1-z log p + = --) 

r;(s) s s p p + z - p -1 

= z • 
r;, (s) 

+ z (z-1) I lo~ p 
Z: (s) s s , 

p (p +z-1) (p -1) 

which completes the proof. D 

I 1-z --log p = s pp -1 



If I 1-z I < h , then 

g' (s) 
is regular for cr > ½. It then follows that gz(s) is 

z 
except at s = 1 and at the (possible) zeros of s(s) 

1 of the line cr = 2. 

we get 

Integrating the formula 

g' (s) 
z ---= z g (s) 
z 

s'(s) + z(z-l)R (s) 
s(s) z 

z g (s) = s (s) exp(P (s)), z z 

where Pz(s) is analytic for cr > ½· 

1 regular for cr > 2 

situated at the right 

Thus g (s) is analytic in the shaded region below, where the p's z 
stand for the (possible) zeros of s(s) which lie at the right of the line 

1 
a = 2· 

0 

9 
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Hence, if (for example) z is irrational and lt-zl ~ ✓2, we find, surprising­

ly enough, regardless of which z is chosen subject to the above conditions, 

that the set of singularities of gz(s) in the halfplane cr >!always con­

sists of the same points, namely s = 1 and the zeros of ~(s) lying in the 

halfplane cr > !· This seems to lend credence to the Riemann-hypothesis. 
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