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Some theorems concerning the number theorectical functions w(n) and Q(n)

J. van de Lune

Abstract

The functions w and Q are defined as follows: w(l1) = Q(1) = 0 and if

e, e e
n = p, p22...prr is the canonical factorization of the natural number n,
_ _ . _ 8 (n) _
then w(n) = r and Q(n) e + e, + ... + e - It is known that anX( 1) =
= 0o(x), (x>°). There seems to be no corresponding result in the literature

= 0(x), (x*v). Fur-

_yw(n)
X( 1)

for w(n). In this report it is shown that 2n<

3 3 . ©
thermore, it 1s shown that the series 2n= (_])w n)/n converges to zero.

1
Finally, the remarkable duality relation

n n
1= 7 2@ %@ - 7 2D (5@
d/n d/r

and some of its consequences are discussed.

*)

This paper is not for review; it is meant for publication in a journal.






Introduction. As usual, let w(n) denote the number of distinct prime
divisors and Q(n) the total number of prime divisors of the positive
integer n. That is, w(1) = Q(1) = 0 and if

€1 &2 r
n =P, Py ... P

is the canonical factorization of n, then w(n) = r and Q(n) = e1+e2+...+er.

It is known [1, p. 123], [4, II, p. 6171, [5, p. 74] that

;o-ni@

n<x

= o(x), (x> ).

There seems to be no corresponding result in the literature for w(n). In

this report we will prove that

sx) 98 7 ™ C o), x o w).

n<x
We will also establish the convergence of

© (_l)w(n)
n=1 o

and show that the sum of this series is zero. For the corresponding result
for Q(n) see [4, pp. 617-621]. The above results can be sharpened con-

siderably, but we will not take the effort here to do so.

Finally we will prove a remarkable duality relation between w and £

and discuss some of its consequences.

1. Proposition 1.1. The function

o o yw(n)
O Tl SR GLO MRS

n=1 n



which is obviously analytic for Re s = 0 > 1, has an analytic continuation

up to 0 > 1.

Proof. From the definition of w(n) it follows immediately that for o > 1

oo w(n)
-1
d(s) = ) LGl D m( - .1 ...), (p prime).
ol s P s 2s
n=1 n p P
Thus :
£(e)(s) = T—— - 00 - =1 =
Pp-— P p -1
S
P
28 _ 58 1 def
R canv il A ey R OF
Pot-n P (-1
Since pS - 1 has all its zeros on the imaginary axis, it follows that P(s)

is analytic for o > lu Furthermore, it is well-known that is analytic

2 z(s)
for 0 > 1 and it follows that

]
z(s)

¢(s) = . P(s)

is also analytic for o > 1. This completes the proof. [J

THEOREM 1.1. 8x) %5 T 0™ - o), (x> =).
H;X

Before proving this theorem we state the following special version
of the well known [2, p. 124] WIENER-IKEHARA Tauberian theorem: Let F(x)
be non-negative and non-decreasing for x > O.

Let
f(s) = J e 5% F(x)dx
0

converge for o > 1. If f£(s) is analytic for o > 1, except for a simple pole

at s = 1 with residue A, then



limf-—(-El = A,
x

x>0 e
Proof of Theorem 1.1. Note that
1+ D@ 5 0 for n = 1,2,3,...

Hence F(x) def [x] + S(x) is a non-negative, non-decreasing function not

exceeding 2x. It follows that for ¢ > 1,

® (n)
f(e) + g(e) = | A CEDTT
n=1 nS
= 3:0 F(n) - F(n—l) = [m X—SdF(X) =
n=1 n® 1-0
= x—SF(x) + s J F(x)x—s_ldx =
1-0 1
=g J F(x)x_s_ldx =g [ e_sxF(ex)dx.
1 0
Thus
r eTF(Max = 2EL 106 (o5,
0

Recall that z(s) is a meromorphic function with only one simple pole at

s = 1 with residue A = 1. From Proposition 1.1 it now follows that the
function
t(s) + ¢(s) _ _1
S s—-1

is analytic for o > 1. Now, applying the WIENER-IKEHARA theorem, we obtain

X
A=1=1lin ZE&D) o g5 TGO
X X

X>o e X0



= 11 1 + 1im

in [x] + S(x) _
x>0 X x>0

S(x)
—

Thus,
1ims—(x3‘-)- = 0 or S(x) = o(x)

X>o

and this proves the theorem. []

THEOREM 1.2. The series

-n*®
n=1 n

converges and its sum is zero.

Before proving this theorem we state the following well known result

(1, p. 12417.

Let
a(n)

1 ns

g(s) =
ol

He~-18

be absolutely convergent for o > 0 and suppose that g(s) is analytic for
g > 0.

If in addition, a(n) = o(1), then

oo

Y a(n)

n=1

converges and its sum is g(0).

Proof of Theorem 1.2. Define

e

a(n) = =



Then we have

o sw(n)
g(s) = ) 5—1%;7——-= b (s+1).
n=1 n

Since ¢(s) is analytic for o > 1, we see that g(s) is analytic for o > 0,
and it follows that the series appearing in theorem 1.2 converges.

Moreover,

P(s) _
(s) 0

g(0) = ¢(1) = lim z
s>1

and the theorem is proved. []

Remark. Actually, ¢(s) has a zero of order 2 at s = 1 because,

s 2
- . mo(1- ___l__ig} =

_$(s) 1im { -
(s-1) p>3 (p -1

. 1
lim ————
s>1 (s—])2 s>1 (s=1)c(s)

41log2 . T (- ———1-75) # 0.
p>3 (p-1)

Note by contrast that the corresponding function

2 nt®

n=1 n

_ t(2s)
s z(s)

only has a simple zero at s = 1,



2. From their definitions it is hardly to be expected that there is much
of a relation between w(n) and Q2(n). However, we will exhibit below a re-
markable duality relation between the two functions and discuss some of

its consequences.

We first note that [3, p. 355]

_ log n
w(n) = 0(log log n)’

from which it is easily seen that if Re s = ¢ > 1 then

© Zw(n)

s
n=1 n

. . . O ..
is an entire function of z. Also, for o > | and |zl < 27, it is clear that

o ZQ(n) 2

4 Z 1
=7 (1 + — + —/— + ) =1 ——
2 - A
n=1 n° P pS P s P 1 S
p
is an analytic function of z.
THEOREM 2.1. If |z| < 2° and o > 1 then
o wn) © Q(n)
l_.
2.1) (] 2> . ] L5 - .
n=1 n n=1 n
Proof.
o  w(n)
Z =T (1 + =% F 2 4+ 2 4 ) =
s P s 2s 3s
n=l n P P P
1
s S 4, -
=p(+z—L—y=qpg P *tz-1



and

© Q
2 M= Mo+ 1-2 + (]—z)z . (]—z)3 . -
n=1 ns P ps pZS p35
1-2z
s s
=17 (1 + _L_) =11 P
1 - lif— p° +z — 1
P
Hence
@ w(n) . (l_z)ﬂ(n)
(I == L —) -
n=l n n=1 n
s s
+ z -1 1
= ni— n—" = —7 = ()
P p -1 Pp”+2z-1 Pl-:
P

and the theorem follows easily. []

Performing Dirichlet multiplication in (2.1), equating coefficients

and changing z into 1 - z we obtain:
n
Q(g)

z zw(d)(l-z)
d|n din

a remarkable duality relation between w and Q.

We now study the analytic continuation of

©  w(n)
g, () Y€ ] Z—, (z fixed, 0 > 1)
n=1 n

as a function of s. We first have

Proposition 2.1. If |1-z] <2 and ¢ > 1 then



g!(s)
(2.2) z =

z'(s)

g, (s) °~

+ z(z-1) 2
z(s) b (pS+z-

log p

1) (p°-1)

(where all derivatives are taken with respect to s).

Proof. From (2.1) we obtain

g,(s) . g (1 +

1-2z

2
L O-2)°

p

which can be written as

g, (s) =

z(s)

S

2s
p

S
b *tz-1

]
p

Taking logarithmic derivatives, we find

cee) = 2(s),

8'(5) 1 S
z p p t+tz-1
' —-—
E pp +z -1
1 - - -
- Z(S? + 7 . 1 -z L 2) log p + ) 1-z
pp +tz-1 p-l pp -l
1]
=z E—ésl + z(z-1) Z 5 log p —
: p (p+z=1)(p -1)
which completes the proof. [J

log p



If |1-2]| < Y2, then

def log p
R (s) = )
i p (p°+z-1) (p°-1)

8. (s)
is regular for ¢ > 1. It then follows that EETET is regular for ¢ > %
z

except at s = 1 and at the (possible) zeros of z(s) situated at the right

of the line o = %u

Integrating the formula

g;(s) _, z'(s)
g, (s) z(s)

+ Z(z-l)Rz(s)

we get

g,(s) = £°(s) exp( (s)),

where Pz(s) is analytic for o > %u

Thus gz(s) is analytic in the shaded region below, where the p's

stand for the (possible) zeros of z(s) which lie at the right of the line

2’ L

o
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Hence, if (for example) z is irrational and ll-zl < V2, we find, surprising-
ly enough, regardless of which z is chosen subject to the above conditions,

that the set of singularities of gz(s) in the halfplane o > %—always con-

sists of the same points, namely s = 1 and the zeros of z(s) lying in the
halfplane o > 1

7 This seems to lend credence to the Riemann-hypothesis.



References

[1] R. AYOUB, 4n introduction to the analytic theory of numbers,
A.M.S., Providence, Rhode Island, 1963.

[2] K. CHANDRASEKHARAN, Introduction to analytic number theory,
Springer Verlag, 1968.

[3] G.H. HARDY and E.M. WRIGHT, Introduction to the theory of numbers,
4th edition, Oxford, 1968.

(4] E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen,
Chelsea, New York, 1953,

[5] K. PRACHAR, Primzahlverteilung, Springer Verlag, 1957.

11






