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0. INTRODUCTION
Writing

(1) H(n) = -1-.1(_ )
1

o~

k

Euler's constant y is usually defined as the limit of the increasing

sequence

(2) {H(n) - log(a+D} _ ,

or, equivalently, as the limit of the decreasing sequence

(3 {H(n) - log n}:=l.
Since
e 1
(4) H(n) - log(n+1) = ] {3 - log(l+ )}
k=1
it follows that
T 1 1
(5) v = ) {f- logl+ Dl

k=1

From (4) and (5) one may derive that

1 1 1

(6) vy s B S {H(n) - log(n+l)} < T (Ynel).
6n
Since
(7) H(n) - log n = H(n) - log(n+1l) + log(l+ %)
and
1 1 1 1
(8 re 2<10g(1-i-H) <=

2n



it follows from (6) that

11 1 2
(9) —2‘1-1‘ 5 < H(n) - log n Yy < Er_l + —-—i' .
2n 3n
From (6) and (9) it is clear that the sequences (2) and (3) converge
rather slowly and that, from the numerical point of view, it would be better

to consider y as the common limit of, for example, the following two

(monotonic) sequences

(10) {H(n) - log(n+l) + 5%}:=]
and
(11) {H(n) - log n - 5}°_,

where (10) is decreasing and (11) is increasing.

CESARO considered (cf. [2], p. 460) the sequence
1 ©
(12) {H(n) - 5 log n(n+tD)} _,
and showed that

(13) 0 < H(n) - 5 log n(a+l) - y < EIT(IEITT :

It was shown by LODGE (cf. [2], p. 460) that a very good approximation
of the n~th term of (12) is given by

1
6{n(n+1) + -;-}

(14) Y+
the error being of the order
(15) n

In this note we will consider a number of wvariations on Cesdro's

sequence 212). Some examples are:



n+l
(16) {H(n) - J log x dx}:=]
n
which approximates y from above, the error being less than ! 5 3
12n
1 o
(17 {H(n) - log(n+'§)}n;1

which tends decreasingly to vy, the error being less than-—l—f s
‘ 24n

i
(18) {(Hm) + log(™ ' - D17

which tends increasingly to y, the rapidity of convergence being about the

same as that of (17). We will also determine all constants ¢ > -1 for which
0

(19) {H(n) - 10g(n+c)}n=1

is monotonic. For more refined methods to compute y numerically we refer to

(1], [31, [4], [5] and [61].

We conclude this note by proving the remarkable identity

(--])n [1og n

n+l log 2]

(20) 1 -y= )
n=2

where [+] denotes the greatest integer function.

1. The general term of Cesdro's sequence may be written as

log n + log(n+l)
2

(21) H(n) -

in which the term log n +210g(n+l) may be considered as a trapezoidal ap-

proximation of f2+1 log x dx.

Because of the concavity of log x we have

n+l
I log x dx.

n

log n + log(n+l) <

(22) 5




Next we observe that

(23) H(n) - 1281 +21°g(n+l) >y

In order to see this it suffices to prove that (12) is decreasing in n,

Hence, we want to show that

(24) H(n) - %-log n(atl) > H(n+l) - 3 log(n+l) (n+2)
or
(25) log(n+2) - log n > 2
& & n+l
or
(26) log(1l +—l—0 - log(l-—l—) > 2
n+l n+1 n+l

which is true by the wellknown inequality

: o 2n+1
(27) log(1+x) - log(l-x) = 2 )
n=0

o T 2x, (0kx<1).

After these observations it seems natural to investigate the behaviour

of the sequence

n+l
(28) {H(n) - [ log x dx}__,.
n
Since
n n !
(29) H(n) = ) %~= ) J &1 g =
k=1 k=1
0
1 -]
1 - x" I - e“nt
= J — dx = j et p dt,
0 0

we define



(30) T (s>-1),

¢ | - oot
H(s) = j —_— dt,
0 e -1

and instead of (28) we will consider, more generally, the function

s+l
v(s) def H(s) - J log x dx, (s>0).

S

3D

We first ﬁrove the following

) . +
PROPOSITION 1.1. v(s) is decreasing on R .

PROOF. Since

T -t
(32) log o = [ EL———E~———- (a>0),
0

the derivative of yv(s) may be written as

H'(s) - log(s+l) + log s =

(33) y'(s) =
oSt vt 4 et (st
] of _ t
0 0
< t
- -
- [ oSt { t _1-e } dt,  (s>0).
t t
b e - 1
Now observe that for t > 0 we have
© 2n
2 2 t
(34) t“<t"+2 ) Gy "
n=2
2 3 4 2 3 4
t t t t t t
= t+_2—l+f+_4—!_+'“) + (_t+_ZT_?T+E

(1) + (e 5-1) = (1-e"%)(et-1),

so that



(35) < »  (e>0)

From (33) and (35) it follows that

(36) y'(s) <0, (s>0).

proving the proposition. [
Next we have

PROPOSITION 1.2.

(36) 1im y(s) = v.

S—»co
PROOF. In view of proposition 1.1 it suffices to show that
(38) lim yv(n) = v, (ne),

n--o

Since we clearly have that

(39) H(n) - log(n+l) < y(n) < H(n) - logn

the proposition follows. [J
As to the rapidity of convergence we have

PROPOSITION 1.3. '

(40) Y<y(s) <yt —, (s30).
12s

PROOF. From propositions 1.1 and 1.2 it is clear that y < y(s) for all

s > 0. From (33) we infer that for a,b > 0 we have



(41) y(b) - y(a)

b
= J y'(s) ds =
a
b o
r -t
_ J o st{ t _ 1 e } dt ds =
J t t .
20 e -1
[ t 1 - et i -st
= { ra - T } J e s ds dt =
o & -1 a
T -at -bt -t
e - e t 1 - e
- [ t = - t } dt
0 e -1

Replacing a by s and letting b » « we obtain

©o

-st -t

(42) ¥(s) =y + [ e bt -y, (s50).
0 e -1
Now observe that
-t 2
1 - e t t
(43) (0 <) T - T <17 > (t>0).

In order to see this we may argue as follows:

If n > 3 then

2

@ Be3b.3.Si3aiiiast aen
so that

(45) 2 . 3%2 < n(n+1) (n42)...(20) = _(I(I_ffl‘.;_:.

or

(46) R il !

* (2n)! é=(n—1)1

Hence, if 0 < t £ 3 and n > then

&



th tn+2

MR E

(48) 24 .,

Consequently we have

o t2n E tn+2
(49) 24 . ) - < =7 , (0<tz3).
L5 (2n) T L (n-1) '
(22 22

Since 24 . , it follows that

(2.7 - 2=0!
2n ) n+2

2 ) —(;t;]—)*.‘ »  (0<tz3),

(50) 24 . ) =7 <
2 20 0y

n==

from which it is easily seen that

3
(51) efre 2o <, (0cee),
so that
~t t 2 t2 t
(52) (l-e N(e -1) - t7 < 15 - t(e -1),
or, equivalently,
-t 2
I - e t t
(53) c e <77 > (0<t<3).
e -1
If t > 3 then certainly
2
1 t
(54) ? < ']—2‘ ?
Since we obviously have that
-t
I - e t 1
(55) £ - € < ? 3 (t>0)9
e =1
it follows that also
-t 2
I -~ e t t
(56) £ £ < ]—2- 5 (t>3).



Combining (53) and (56) it follows that (43) holds.
From (42) and (43) it is clear now that

[ e--St 1 - e-t t t2 . 1 e—St t2
(57) Y(S)=Y+J T { t ‘et-l"—]i}dt"'Jt ‘17
0 0
<‘y+—]— e St dt =y + »  (s>0),
12 2
0 12s

completing the proof. [J

REMARK. From (42) one may derive the following asymptotic expansion

1 (-7 -n
v(s) ~y+ ] ~{—5--B}s =
n=2
1 1 % B -n
=y + 1 +5-= (s+1) log(1+2) = ] BT (s)
S S n=2 n

where the Bn are Bernoulli's numbers defined by

© B
t n
t = Z ;?t b (It‘<2")’
e -1 n=0
2, In this section we consider the sequence
(58) {d(n) - log(n+c)}:=1

where ¢ is some constant in the open interval (-~1,«),

PROPOSITION 2.1. If =1 < c.;-% then the sequerice (58) tends decreasingly

to v.
Before proving this proposition we establish the following

LEMMA 2.1. The function

11
eX -1 X

(59) £(x) = »  (x>0)



10

is increasing. Moreover,

(60) lim £(x) = —-% )

x40

PROOF. Since for |x| < 2w we have

1 X _
(61) f(x) =% {—;f~—— -1} =
e -1
—-1_{(1..§+3£_+ )—]}——l-;-__}_{_-.;.
T ox 2 12 T2 7 12 :
it is clear that lim f(x) = - %u

x+0

. . . +
In order to see that f(x) is increasing on R we may argue as follows.

Since
—ex 1
(62) f'(X) = ———-—'—‘7 + —-—2—
(ex-l) X

it suffices to show that

(63) -2 5> %2 . 5, (x0)

or, equivalently, that

(64) XX 20X 115 %% 5, (x0).
Since
© .n
(65) e2x _ ZeX + ] = Z 2 . 2 n’
n=2 e
and
2 x ° %
(66) xe=X——_———,—,
n=2 (n-2).
and ‘
2% -2 1

(67) . = =2)7 for n =2 and n = 3,



11

we are done if we can show that

2" -
(68) . n!

2 N 1
(n-2)!

for n > 4,

or, equivalently, that

n

(69) 27 - 2> n(n-1), (n>4).

It is easily seen by induction that

N4
[»]
N

(70) 2 (n>4),

so that ) n2-—2 > n2-n = n(n-1), (n>4) completing the proof of the

v

lemma. [J

REMARK. Lemma 2.1 may also be proved by means of the identity

1
] —— - ——, 0,
k=1 e2 X e -1 :

which may be deduced from

_x _x
(1-e 2% 11 (1+e 25 =1 -¢7%,
k=1

by logarithmic differentiation and taking the limit for n =+ o,

PROOF OF PROPOSITION 2.1. Fix any c such that -1 < ¢ ;zéu In order to show

that (58) is decreasing we have to prove that for all n e I

(71) H(n) - log(n+c) > H(n+1) - log (n+l+c),

or, equivalently, that

1
n+l ?

(72) Log(1+—) >

or

|OTHEEK MATHEMATIBEH CEnTRUM
B AMSTERD AR —
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+]’ (a:._l.__).

(73) c < —— - vy

1

e -1 @
In view of lemma 2.1 and our assumption that ¢ ;:%~it follows that (73) is
true indeed. Since it is obvious that (58) has the limit vy this completes

the proof of the proposition.

PROPOSITION 2.2. If ¢ > —I—L—-- 1 (= 0.54149...) then the sequence (58)
el -1

tends increasingly to .

PROOF. Similarly as in the proof of proposition 2.1 it suffices to show

that for all n € N we have

1

I
(74) C>T——‘—-a‘+l, (a—m)°
e -1
Since a = E%T-;:%-, (74) follows from lemma 2.1, completing the proof. []
PROPOSITION 2.3. If % < c_;-—rl——* - 1 then the sequence
e? - 1
(75) {H(n) - 1og(n+c)}:=]

i8 eventually increasing.

PROOF. Fix any c¢ > lu Similarly as before we have

2
(76) H(n) - log(n+c) < H(n+l) - log(n+l+c)
if and only if
(77) C>—‘—"—l—‘—“‘—(n+])+]=—_—1_——-—_l+l (a=l)
! a a ’ n+l
gy e -1
n+l
e -1

If follows from lemma 2.1 and our assumption that ¢ > %—that (77) holds if

n is large enough. [

A somewhat closer examination of the above argument reveals that for

all n e N

F



(78) H(n) - 10g<1-+ I ) < y.

More precisely we have

PROPOSITION 2.4. The sequence

(79) {H(n) - 10g(]-+ ]‘ )}

'E n=1
e -1

converges increasingly to y.

PROOF. It is easy to see that

H(n) - 1og(1-+ ]] )}.

e -1

(80) v = 1lim

n>e«

et

In order to see that (79) is increasing we may argue as follows.

) < H(n+l) - 10g(1 +—-—1———->
\

1
e’ -1 en+]—1

In order to prove that

(81) H(n) - 1og<]+

we may just as well show that

1
n+l -1

1 + {e -1} 1
(82) log T < e
P+ ™ - 137!
or
I T
n+l n+1 -1
e {e -1} 1
(83) log T 3
e {e™ - 1} l
or
1
n
(84) log —ET—:;l—-< %
n+]
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or
+ .1
(85) E_T:_l < o
e1:1+l -1
or
L 11 1
(86) {en+1 - 1}_l < ™™ - 1}“1 =1+ {&" - 1}—1
or
1 1
(87) o T s @) < -y -
or
1 1 1 1
(88) — - < -
e -1 ¢ eB -1 B
where o = = l T < %-= R. Hence, the proposition follows from lemma 2.1. [J

PROPOSITION 2.5. The sequence

1
(89) (@) + log ™' - D7
tends increasingly to y.
PROQF. Observe that
1 1
— i _
(90) H(n) + log(e™' - 1) = H(a+1) ~—— + log(e™' - 1) =
1
en+1
= H(n+1) - log 7 =
éﬁ:ﬁ -1
( 1
= H(n+]) - ]_Og |1 + ————1———-——
\ —_—
. n+l

e -1

so that our assertion follows from proposition 2.4. [|
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. I . e
Concerning the case ¢ = 7 1n proposition 2.1 we have

PROPOSITION 2.6.

91) y < H(n) - log(n+4) <y + —1— .
2 2
24n

PROOF. First observe that for s > 0

(92) H(s) - log(s+%) =

1t

(93) - >0, (t>0)
e -1

(the proof of which is left to the reader) it is clear that
Y < H(s) - log(s+3), (s>0).

Now observe that

(94) - < (t>0).

£
t t 24 °

In order to see this we may argue as follows:

First let t > 4. Then

(95) - < < P
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so that (94) holds for t > 4.

Now let 0 < t < 4, If in addition n > 3, then 0 < t < n+l, so that

tn+] < (n+])nf]

(96) 26 . ¢!

or

(97) t2n+1 ) tn+2
22n(2n+1)! 24.n!

Since (97) also holds for n

t,2n+1

= (D) ,
(98) 2 Z (2n+]), <
from which it follows that
t t
= - 2
2 2 t
’(99) e - e -t < A
or
-t
2
(100) (e’ -1) e -t <
or Tt
2
e 1 t
(1or) t  t YA
e - 1

Combining (95) and (101) we

20 k) (042)

find that (94) is true.

, from which it is easily seen that

.(2n+1),

2 and 0 < t < 4 we have

(et-1)

. (0<t<4).

e £t
1 -st je 2 1
(102) H(s) - 1og(s-+§9 =y + [ e { rntialis
e —
0
-st t 1 -st _
+ j e Ez'dt <y + EZ'J e t dt =y +
0 0
completing the proof of the proposition. [J

Consequently we have
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REMARK. Numerically it turns out that (for rather small n) the rapidity
of convergence of (79) (or (89)) is about the same as that in (91).

3. In this section we prove
PROPOSITION 3.1. The sequence
(103) {H(n) + log log(l +<%)}:=1
tends decreasingly to v.
PROOF. Since e = 1lim(1 + é)n and

N>

(104) H(n) + log log(1l +-%) = H(n) - log n + log log(l +-—rl—l-)n

it is clear that (103) tends to y. In order to show that (103) is decreasing

we have to prove that

(105) H(n) + log log(l + 19 > H(n+1) + log log (1 + e
g n n+l
or
log(l + 1) |
(106) log ‘1‘ .
log(l +——-) n
n+l
or
1 1
log(1 +2) —
oy T P
10g(] +~‘[.1_';T)
or
1 1
-log(l - —) -
(108) ntl” o, Bt

1
log(1 +m)

Hence it certainly suffices to show that

-log(1~x) X
(109) m> e (O<X<1),
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or

(110)

Since for 0 < t < 1 we have

—19g(1—x) > e {-log(l ——]f—x)},

2 3 2 3
(111) ~1og(1—t)=t+%—-+£3—+.. <t+-t—2—+1§1t_t,
it suffices to show that
2 3 2 3
X X} x 1 X 1 X 1 1
(112) x+—x—-+——+...>e{ 5 + = . =
2 3 T+x = 2 23 3 x [
(14%) (1+x) 1——_'—_;
=exf X 1 x2 +_1_ x3 }
1T+x = 2 (14x) 2 (14x) 2
or
2 o x X 3 1 .2
(113) (1+)° ) >e {1 + 5 x +3x},
n=1
or
s 1 2 I n_ o 1 3 1 n
(114) L« Z+—2)x > ) (+ —57 —<7) X .
ne3 n+l n n-1 n=3 D 2.(n-1)! 3.(n-2)!
It is easily seen that
1 2 1 1 3 1
(115) n+1 +E+n-—1 >Evi.Z.(n--l)! +3.(n-—2)! ?

for all n > 3, so that (114) follows, completing the proof.

REMARK. Since

’[l-l-l

(116) (1 +%) 2 > e, (nelN)
we have
(117) H(n) + log log(l +%) =

= H(n) - 1og(n+—;-) + log log(l +£l—)

1
n+ =

0

> H(n) - 10g(n+-;—),
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According to proposition 2.5 we have
1
H(n) - log(nr+§9 > v,

so that the only interesting thing in proposition 3.1 is the monotonicity
of (101).

4, We conclude this note by proving the following remarkable identity

(e

(118) 1-y= ) (-

n=2

n [zlog nJ

n+l ?

where 21og n denotes the logarithm of n in the base 2 whereas [] denotes
the greatest integer function.
Since the general term of the series in (118) tends to zero the con-
vergence of this series follows from the convergence of
2N+1
(119) sav) €8 7 (-

n=2

n [zlog n]

n+l ¥ (N—-)OO).

It is easily seen that S(N) is increasing so that it suffices to prove the

convergence of S(ZN), (N0) ,

Writing
n
(120 k@ = ] ol
k=1
we have
(121) K(2n) = H(2n) - H(n).

Now observe thatu

]
~1
~
I
~
=]
toan
)
ja—
@}
aQ
=]
-]
It

(122) s2My
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i
+ N( - + = .. + - ) =
MNoegp N Ny N o

= {1;(4) - K(2)} + 2{KR(8) - K(4)} + ... + N{K(ZNH) - K(ZN)} =
= ~{K(2) + (R(4) + ... + K@D} + nr@™ =

= —{(H(2) - H(1)) + (H(4) - H) + ... + @@ - 52"} +
e . @™ - aEhy -

=u( - 52N + v . meEM) - 1@My -

=1 +n8. QY - @) .Y =

1
N+1

=1+N. {(N+1) log 2 + y + O Y} +

(
2

- 1) . {Nlog 2 +y + 0(—) =
N

N
1_Y+O(_N')9
2

from which (118) is immediate. [J
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ADDENDUM.

Just before the printing of this note we found that (118) is equivalent
to a similar relation given by SANDHAM in the Amer. Math. Monthly, Vol. 56
(1949) p. 414,

A proof of SANDHAM's formula (by BARROW) may be found in the Amer.
Math. Monthly, Vol. 58 (1951) p. 117.
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