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Some inequalities involving Riemann's zeta-function

by

J. van de Lune

ABSTRACT

Littlewood showed that for infinitely many n € N, ¢y(n) is consider-
ably larger than n, | being Chebychef's function occurring in prime number
theory.

Since

[e ]

- 5;—§:%= s J e St yeh) de, (s > 1)
0

it secems reasonable to expect that

for at least some values of s > 1.

However, in this note it will be shown that, for example,

z'(s) 1
2 (s) <7 Vs >0.
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0. INTRODUCTION

The subject of this note was motivated by the following observation:
If, as usual, we define the number theoretical functions A and ¢ by (cf.
(2], p.252 and p.344)

logp if n= pm
(1) A(n) = o

0 if n#p
and
(2) Pp(x) = ) A(n)

nsx
then (cf. [1], p.188)
(3) -2l - j e Sty (ehyat, (s > 1).
0

It is well known that there exist arbitrarily large values of x for

which

(4) P(x) > x

or, more precisely (cf. [4]), that there exists a positive constant <y such
that

(5) y(n) > n + c./n log log log n

0

for infinitely many positive integers n, Since, as will be shown later on,
the (entire) function (s-1)z(s) is increasing on the positive real axis

with a positive derivative
(6) é%-(s-l)C(S) = (s-1)g'(s) + ¢(s) > O, (s > 0)

we certainly have

Q) - e) L (= J e'Stetdt>, (s > 1).
0

z(s)



From (3) and (7) it is easily seen that

(8) f e St (eb)de < f e Stetdr, (s > 1)
0 0

which is quite an intriguing inequality in view of the fact that for cer-
tain arbitrarily large values of t, the function w(et) is considerably

larger than et.

1. For later use we first prove the following

LEMMA.

9) O § (s > 0).

PROOF. For Re s = 0 > 1 we have

[e]

1 _ -s
(10) -1 - J x “dx
so that ! -
(11) () = ] n et - [ Wt § a0
n=1 1 =1

(c > 1).
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Since z(s) - (s—l)—l is an entire function and since the last series in (11)
represents an analytic function for o > 0 (the proof of which is easily sup-

plied) we have by analytic continuation

- n+l
(12) O R L I (0 > 0).
n=1
n

. . -s . +
Now observe that for any fixed s » 0 the function x ~ is convex on R

so that for all n ¢ W

n+l
(13) J x Sdx < %-{n_s + (n+l)-s}.

n



From (12) and (13) it follows that

o]

1 1 -s -s 1
(14) C(S)—s_1>52{n -(n+l)}=-2-, (s > 0)
n=1
proving the lemma.
Next we prove
THEOREM 1.
(15) L (s-Di(s) = (s=1)8'(s) + (s) > 0, (s > 0).
PROOF. For s > 0 we have (cf. [5], p.14)
_ 1 _ x - [x]
(16) t(s) = s-71° 1 - s J ——E:T——-dx.
X
Writing p(x) = x - [x] we thus have
(17) t(s) = —— +1 -5 | RE) gy (s > 0)
s - 1 s+l
and !
(18) LEIRFII N U E (s > 0)
s+1 s s = 1 ? ’
| ¥
so that (note that p(x) > 0 for all x e R \ Z)
. _ 1 p(x) log x p(x)
(19) z'(s) = - 5+ s dx - dx >
s+l s+1
(s-1) 1 X ] X
1 Jp(x) 1 1 1 }
> - - dx = - + —1z(s) - -1
(s—l)2 ! xs+1 (S_])Z s | s 1
1
= - 2+C§S)_sil (s > 0)
(s-1)
Taking s > 1 it follows that
(20) (s-1)2'(s) > ————+ 2"t g(s) -1 = - 2+ 2L
s = 1 s -1 s



so that
_ ' _ s s - 1 _
(21) (s-1)z"(s) + z(s) > e ( i I)C(S)
_ _ _Ss 2s - 1
ST s-1° s z(s).
Since
2s - 1
S — > 0, (s > 1)
and
1 1
C(S)_S""1>—2-’ (s > 0),
it follows from (21) that
(22) (s=102"(s) + ¢(s) » ~—S—+ 2821 (1 1) _ 1
s - 1 s \s -1 2 2s ’
(s > 1),

from which it is clear that (15) holds true for s > 1 and by continuity also
for s = 1. Actually for s = 1 the left hand side of (22) takes the value
y = Euler's constant as may be seen from the Laurent expansion of z(s) a-

bout the point s = 1 (cf. [5], p. 16)
- _
(23) z(s) = s Y + al(s 1) + ...

In order to show that (15) also holds for 0 < s < | we observe that
(cf. [5], p. 14) for s > 0

[(x = [x]- }

1 1
(24) A R ey
1
= l +l— ’PI(X) d -
s-1.2"58 s+l X7
’x

. {p2<x> - 17 l:’ ) J {Pz(x) __12} dx—s—l} i

®
1
-
| —



o 1
— - P, (x)
1 1 12 2
S-1+E+ s(s+])J—————-——-s_*_2 dx
1 X

where (cf. [3], pp.523-525)
(25) PG = x - [x] - 3

and Pz(x) is the continuous periodic function defined by

(26) Pé(x) = Pl(x), (xe R\ Z)
and 1
(27) f Pz(x)dx = 0.

0

Since (cf. [3], pp.536-537)

(28) q(x) def —11—2 - Pz(x) >0 for all xe R\ Z

it follows from (24) that

' _ 1 (x) q(x) log x
(29) t'(s) = - 5+ (2s+1) J SEIE dx - s(s+l1) f R
(s-1) 1 X 1 X
< - ] + (2s+1) qx) dx <
( 2 s+2
s-1) 1 X
< - ! + (2s+1 9x)
5 s+1) > dx, (s > 0).
(s=1) 1 X
From (24) we also obtain
(€3 NP (I [€'9 R 1 1 _1
(30) f 2 T3 I sz TS ) T v T
1 1
Since
1
(31) z(0) = -3

by (24), and (cf. [5], p.20)

(32) z'(0) = - %-log 21



it follows from (30) that

1 } -
(s-])2 s=0

1
2

(33) f q(g) dx {C'(x) +
1

z'(0) + 1=1-3log 2r = 0.08106...

In combination with (29) it follows that

(34) £ (s) < - — 5 + (2s+1) % 0.0811,

(s-1)

so that for 0 < s < 1

(35) (s=1)z'(s) > = =4 + (s=1)(2s+1) * 0.0811.

Hence, for 0 < s < | we have

(36) (s=1)z'(s) + t(s) > z(s) - + (s-1)(2s+1) = 0.0811 >

s = 1
1 _ —9g2 >1_9
> 3 (14s-2s7) = 0.0811 2 5 g * 0.0811 > 0.4
so that (15) also holds true for 0 < s < 1, completing the proof. g

COROLLARY 1.1. The function (s-1)t(s) is increasing on the positive real

axis.

COROLLARY 1.2. Using the same notation as in the introduction we have

-st, .t 1 / 1
(37) [ e " Y(e)dt < s(-D) \< s- 1) (s > 1),
0
2. THEOREM 2.
(38) £'(s) + —— > 0, (s > 0).
(s-1)

PROOF. From (see (24))

1 1 P ()
(39) z(s) = p— + 78 J dx, (s > 0)
X



we obtain by partial integration that

[e o]

1 1 s P3(x)
(40) C(S) = s - 1 + E‘ + —1‘2' - S(S+1)(S+2) J —;E dx
] X
where P3(x) is as in [3], p.524-525.
Since (cf. [31, p.527)
4 4 1
(41) |P,(x)| 2 <= < zq
3 (2n)3 63 50
we have
1
(42) P3(x) + 30 >0 for all x ¢ R
so that by (40) for s > 0
0 1 1 1 s 1
(43) -———-———-—PS(X) +§-6dx=;—_—]_+i+_l-2—+-5—0'8(s+1) ~cle)
xs+3 s(s+1) (s+2) .
1

Now observe that by (42) the left-hand side of (43) is decreasing in

s for s > 0 so that for s > 0

1
(44) s - 1

1 s 1
*ot 13t 5 s(s+1) - z(s)

< lim {RHS of (43)} =

s(s+1)(s+2) s40
1 f 1 1 2s + 1 '
= — 4= + — + -z (s)} =
2 | (s-1)2 12 50 <=0
N 1 + —L-+ —L-+ l-log 2m¢ < 0.01114
2 12 50 2 ) ’

By the same argument the derivative of the RHS of (43) is negative for

s > 0 which is equivalent to

1 | 2
45 o)+ —y - - gt
(s-1)
1 1 s s(s+1)
—T t 5+t o5+ —— - ¢ (s)
S (382+6S+2) s -1 2 12 50

s(s+1) (s+2



In view of (44) it follows that

1
(s-1)

1 2s + 1
2 12% " 50

(46) ' (s) + - (352+65—2) x 0.01114 =

= - 0.03342s% - 0.02684s + 0.08105.

Since this polynomial is decreasing on the positive real axis and at

s = 1 it takes the value
(47) - 0.03342 - 0.02684 + 0.08105 > O

it follows that

1
(s—l)2

(48) z'(s) + >0, (0 <s=1),

It is easily verified that for s > 0

o 1 1 1 s
49) P 70 _s-T1t2* 12" 59
xs+4 s(s+1)(s+2) (s+3)
1
Since
1
(50) P4(x) + 20 >0 for all Xe R\ Z

the left-hand side of (49) is decreasing in s so that

1 1 s
+ o+ 15 - t(s)

s-1_ 2 . _
(51) s(s+1) (s+2) (s+3) < :i? {RHS of (49)} =
1 1
_ 2712 7Y
= 47 < 0.00026, (s > 1).

Since the derivative of the RHS of (49) is negative we also have after

some calculations

. 1 1 _J1 1 1 11 J
(52) ¢'(s) + ?;::;§-> Tz {s f Tt Tyt T IRE

2
> 1 s(s+1)(s+2) (s+3) I—1--+ ! + ! + ! *
12 s s+ 1 s+ 2 s+ 3

* 0.00026.



This last polynomial is decreasing on the positive real axis and at s = 2

it takes the value

1 fr,o1,1,.1] S
(53) 13 120 12 + 3 4 5I * 0.00026 = 5 154 = 0.00026 > 0.04
so that also
(54) t'(s) + —— > 0, (1 <sz2).
(s-1)

Similarly as before we have for s > 2

1 1 1 1
S——_T+ —2-+ l—sz'- C(S) 1 + 'E + —6"" Q(Z)
(55) s(s+ 1) (s72) (573) < 130 < 0.000187

and (since the derivative of the RHS of (49) is negative)

(56) €'(s) + —L > - s(erny (s (o43) {1

+
(s=1) 12

1 1 + 1 .
s + 1 s + 2 s +3

* 0.000187.
This polynomial is decreasing on R’ and at s = 3 it takes the value

(57) 0.0833... - 0.0639... > 0O

A

from which it follows that (15) also holds true for 2 < s 3.

The following finishing touch of the proof is due to E. WATTEL. It is

easily verified that

(58) 10382 < 1 s, (s > 3)
2 2(s-1)

and

(59) log 3 .1 | (s > 3).

35 6(s-1)2

. . . log x . .
Since for any fixed s > 3 the function ;% is convex on the inteval

[3,©) we have

(60) o 1og n J 105 X gx = 1 + (s—l) log (3 5)
n- n® 3} x° (s-1) (3 5)°
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and from this it is easily seen that

v 1
(61) j en. 1 o, (s > 3).
n=4 n 3(s-1)

From (58), (59) and (61) it is clear that

(62) - '(s) = log 2 + log 3 + z log n < 1 (s > 3)

25 3% n=4 n° (8‘1)2 ’

so that (15) also holds for s > 3, completing the proof of theorem 2.

COROLLARY 2.1. The entire function z(s) - EéT is increasing on R'.

COROLLARY 2.2,

> Y, (s> 1)

(63) e(s) - ——

This follows from corollary 2.1 and (23).

COROLLARY 2.3.

(64) (s=1)2'(s) + t(s) > v, (s > 1)
Indeed, it follows from (15) that

(65) (s=Dg'(s) > - = , (s> 1)
so that

(66) (s=1)z'(s) + z(s) > t(s) - (s >1)

s ~-17

and (64) follows from (63).

3. In order to show that the technique illustrated above also applies to

alternating series we prove in this section

THEOREM 3.

(63) n'(s) > 0, (s > 0)



where
] n+l
(64) n(s) = § S

s
n=1 n

PROOF, Define the function ?\]: R > R by

11

(Re s =0 > 0).

-—12- if- 2m < X < 2m + §, me Z
(65) A](X) = 0 if X e Z
}2— if 2m - 1 < x < 2m, me Z
Then for s > 0 we have
w o ontl g N LI )
(66) n(s) = § le———=f xsdxl(x) = ‘S l —J}\l(x)dxs=
=1 n X 1-
1- 1
T
1 1
= —2- + s J v dx
1 X
Define
X
(67) }\2(x) = J )\](t)dt, (xe R).
1
Then
B A (x) e ]
1 1 _1 2 _ -s-1] _
(68) n(s) = 7 *s J-—gﬁ' d)\z(x) =5 ts { e f AZ(X)dx [
X X 1
1 1
oo o) 1
A, (%) == A, (%)
-1 2 gx =Ll .8 2 2
=3 + s(s+l1) [ ) dx 5 + 5 s(s+1) J = dx,
X x
1 1
(s > 0)
so that -
1
(69) n(s) = 3+ 5 - s(s+) J ?}% dx, (s > 0)
where !
=1
(70) p(x) = 5 AZ(X).

It is easily seen that p(x) is continuous and that

(71) p(x) > 0,

BIBLIOTHEEK MATHEMATISCH CENTRY?
——AMSTERDAM —

(X#%+m;mé22),
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from which it follows that

1 (x) log x (x)
1 = - pPiX) ‘og X - ASP
(72) n'(s) 5+ s(s+1) J =3 dx - (2s+1) J w7 4x >
x X
1 1
1 p(x)
> '2— - (25+1) . 2 dxs (S > O).
1 X
Since
(73) s = (1-21%(s), (Vx € ©)
it follows by logarithmic differentiation that
n'(s) _z'(s) . 2'7° 1o0g 2
(74) = + .
n(s) | T(s) | | _ -
From (73) and (31) it follows that
1
(75) n(0) = 7
so that, using (32), we obtain
2 1 -2 2 2
Hence
o o S
-n(s) + 5+ 3
77) f p(x) dx = lim J Bﬁzl-dx = lim z2_2,
2 s+2 s(s+1)
1 X s>0 1 X s=0
1
= L v — E v e J e — —
{ n(s)+2}S=0 n'(0) + 7 ~ 3 log 5 < 0.275
In view of (72) it follows that
(78) n'(s) > 1. (2s+1) * 0.275, (s > 0).

2

The RHS of (78) is decreasing on R and is still positive at s = 0.41 so
that

(79) n'(s) > 0, (0 < s £ 0.41),

We may proceed somewhat more accurately as follows. From (68) we obtain
‘
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[+ o]

1 Ay (x)
(80) n(s) = 7t s(s+1) I ) dx, (s > 0)
1 X
so that
1 S T AZ(X) _'%
(81) n(s) = 5+ Z-+ s(s+l) J v dx, (s > 0).
1 X
Defining
x
1
(82) x3(x) = J (Az(t) - Z) dt
1
we obtain from (81) that
1 s [ X3(x)
(83) n(s) = 7tz s(s+1) (s+2) J e dx, (s > 0).
1 X
Observing that
; <
A3(x) = 0, (Vx ¢ R)
it follows from (83) that
PR (%)
() 21 1,1 L G 2
(85) n'(s) 4 * x(s+1) (s+2) {2 * s + 1 * s + 2} J Xs+3 dx
1
T A, (%)
> 1 1 1 1 3
A *+ s(s+1)(s+2) {S * s + 1 + s + 2} J x3 dx.
1

Similarly as before one easily finds that

-5 © 1 s
A, (x) A, (x) n(s) - = -+
3 s 3 o1 2 & _1/[, _11
(86) J —;3——dx = :ig J 3 dx :ig ST (55D 7" 0) f

1 1

1)1 Ll 1
5 {-E log 7" Z} > - 0.01211

so .that for s > 0

+ } « 0.01211.

(87) n'(s) > % s(s+1) (s+2) {% * 3 1 1 s+ 2

The RHS of (87) is decreasing on R’ and assumes the value 0.25 - 11 % 0.01211 >
> 0.116 at s = | so that

(88)  n'(s) > 0, 0<s=1.
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If s > 1 then it follows from (85) that

2],"" s(s+1)(s+2) {l +

v

(89) n'(s) e

v

PN

*+ s(s+1)(s+2) {%J' s i T3 -1 2}

so that in view of

11
f A5 (x) "D 73" % _1og2-0.5-0.25_

[oe]

- 0.0095

e 6 B 6
X

(90)
1
we find that

1 i
s + 1 s¥2

(o1) W) > 4 sCerner) {1 } + 0.0095.

The RHS of (91) is decreasing on R’ and assumes the value

0.25 - 26 * 0.0095 = 0.003 at s = 2 so that
(92) n'(s) > 0, (1 <s3s52).

In order to complete the proof we observe that for any fixed s > 2

the function _}o}gsx is decreasing on [2,») so that

(93) n'(s) = (logSZ _ 1og53) . (logs4 _ 10&5 5) ... 0,
2 3 4 5%

proving the theorem. g

. , +
COROLLARY 3.1. n(s) Zs Zncreasing on R .
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