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Some inequalities involving Riemann's zeta-function 

by 

J. van de Lune 

ABSTRACT 

Littlewood showed that for infinitely many n e: :N , 1/J(n) is consider­

ably larger than n, 1/J being Chebychef's function occurring in prime number 

theory. 

Since 
00 

r;, (s) I -st t (s > 1) 
r;(s) = s e 1/J(e ) dt, 

0 

it seems reasonable to expect that 

00 

r;' (s) I -st t dt s > s e e = r; (s) s-1 
0 

for at least some values of s > 1. 

However, in this note it will be shown that, for example, 

r;' (s) 
r;(s) < s-1' Vs> O. 

KEY WORDS & PHRASES: Riemann zeta function, inequalities. 





0. INTRODUCTION 

The subject of this note was motivated by the following observation: 

If, as usual, we define the number theoretical functions A and~ by (cf. 

[2], p.252 and p.344) 

(I) 

and 

(2) 

{
log p 

A(n) = O 

~(x) = l A(n) 
< n=x 

if 

if 

then (cf. [I], p.188) 

(3) r;'(s) 
I'; ( s) 

00 

=sf e-st~(et)dt, 

0 

(s > 1). 

It is well known that there exist arbitrarily large values of x for 

which 

(4) ~(x) > X 

or, more precisely (cf. [4]), that there exists a positive constant c0 such 

that 

(5) ~(n) > n + c0/n log log log n 

for infinitely many positive integers n. Since, as will be shown later on, 

the (entire) function (s-l)r;(s) is increasing on the positive real axis 

with a positive derivative 

(6) 
d ds (s-l)r;(s) = (s-l)r;'(s) + r;(s) > O, (s > 0) 

we certainly have 
00 

(7) (s > I}. 
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From (3) and (7) it is easily seen that 
CX) CX) 

(8) f e-stw(et)dt < f -st tdt e e , (s > I) 

0 0 

which is quite an intriguing inequality in view of the fact that forcer-
. t 

tain arbitrarily large values oft, the function iji{e) is considerably 
t larger than e • 

I. For later use we first prove the following 

LEMMA. 

(9) s(s) - --- > -2, s -

PROOF. For Res= o > 1 we have 
CX) 

( 10) I -s = x dx 
s - 1 

so that 1 

CX) 

(11) s(s) I -s 
= n = 

n=l s -

CX) 

I { -s = 1 + n -s - n=l 

CX) 

CX) f -s I x dx + 
n=l 

1 
n+l 

f -s } x dx, 

n 

(s > 0). 

-s n = 

(o > 1). 

-1 Since s(s) - (s-1) is an entire function and since the last series in (II) 

represents an analytic function for o > 0 (the proof of which is easily sup­

plied) we have by analytic continuation 

n+I 

(12) s(s) - - 1 - = I {n ... s - J 
s - n=l 

-s } x dx, (o > 0). 

n 
-s + Now observe that for any fixed s • 0 the function x is convex on lR 

so that for all n e: lN 

(13) 

n+l I x-sdx < ½ {n-s + (n+l)-s}. 

n 



From (12) and (13) it follows that 

(14) s(s) - 1 1 > _21 I {n-s - (n+l)-s} = 21' 
8 - n=l 

proving the lemma. 

Next we prove 

THEOREM 1. 

(15) 
d ds (s-l)s(s) = (s-l)~'(s) + ~(s) > o, 

PROOF. Fors> 0 we have (cf. [SJ, p.14) 
CX) 

(1~) s(s) = s ~ 1 + 1 - sf x ;+~x] dx. 
1 X 

Writing p(x) = x - [xJ we thus have 
CX) 

(17) 

and 

s(s) = I + 1 - s I~ dx 
s - 1 s+l 

1 X 

CX) 

(18) I~ dx = _!_ - s(s) + --1 + I , 
s+l s s -

1 X 

so that (note that p(x) > 0 for all x E m. \ 2'Z) 

CX) CX) 

(s > 0) 

(s > 0). 

(s > 0) 

(s > 0), 

(19) s'(s) = - I + I p{x) log x d - f ~ dx > 2 s s+l x s+l 
(s-1) l X l X 

CX) 

3 

> - l - I .EJ& dx = 
(s-1)2 xs+l 

1 1 { 2 + s ~(s) 
(s-1) 

-s---1 - 1}= 
1 

= 1 + ~(s) _ I 
(s-l)2 s s - 1 

(s > O). 

Takings> 1 it follows that 

(20) (s-l)s'(s) > - -- + ~ s(s) - 1 = 8 l + s - l s(s) 
s-1 s s- s 
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so that 

(21) s 1 + (s -s 1 + 1\/r(s) --(s-l)z;;'(s) + z;;(s) > - -- I, 
s 

= - s ~ 1 + 2s: 1 z;;(s). 

Since 

2s -
> o, 

s Cs > D 
and 

z;;(s) 1 1 - > 2' s - 1 
(s > 0), 

it follows from (21) that 

(22) (s-l)z;;'(s) + z;;(s) > - s ~ 1 + 2s: = ...L 2s' 

(s > 1), 

from which it is clear that (15) holds true for s > 1 and by continuity also 

for s =I.Actually for s = I the left hand side of (22) takes the value 

y = Euler's constant as may be seen from the Laurent expansion of z;;(s) a­

bout the points= I (cf. [5], p. 16) 

(23) z;; (s) I 
= s--.:::-f + y + a 1(s-1) + •••• 

In order to show that (15) also holds for O < s < I we observe that 

(cf. [5], p. 14) for s > 0 

(24) 1 Ix - [x]- ! 
z;;(s) = -s---1 + 2 - s xs+l 

00 

I J pl (x) dx = = + - - s s - 2 s+l 
1 X 

00 

1 I I s~l d (P2(x) - /2) = = + - - s s - 2 
l X 

l 00 

l {P2(x) - TI I~ J {P2(x) 
- _I l -s-1} = + - - s 12J 

dx 
s - 2 s+l 

X 1 

= 



00 I 
I =--+-+ 
2 s -

I IT - PzCx) 
s(s+l) s+2 · dx 

where (cf. [3], pp.523-525) 

(25) I 
Pl(x) = x - [x] - ·2 

I x 

and P2(x) is the continuous periodic function defined by 

(26) 

and 

(27) 

Since (cf. 

(28) 

it follows 

(29) 

From 

I I PzCx)dx = 0. 

0 

[3], pp.536-537) 

def I q(x) = - - P (x) 12 2 

from (24) that 

z.;'(s) = - I + 
2 (s-1) 

I 
< - 2 + 

(s-1) 

< - I + 
2 (s-1) 

(24) we also obtain 
00 00 

> 0 for all 

00 

( 2s+ I) f q(x) dx - s(s+l) s+2 
I X 

00 

(2s+l) f si!2. dx < s+2 
I X 

00 

(2s+l) I s1!2_ dx 2 , 
I X 

(x e: lR \ 2l ) 

xe:lR\Zl 

00 

I g,{x) log x 
s+2 

I X 

(s > 0). 

(30) f s1!2_ dx = lim f si!2. dx = lim 1 {z.;(s) - -8--1 - -21}. 
2 s• U s+2 s• u s(s+l) 

1 X I X 

Since 

(31) z.;(0) = 
I 
2 

by (24), and (cf. [SJ, p.20) 

(32) z.;' (0) 1 21T = - - log 2 

5 

< 
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it follows from (30) that 
00 

(33) I q(~) dx = {z;'(x) 
} X 

+ 1 } = 
(s-1) 2 s=O 

= z;'(O) + 1 = 
1 - 2 log 21T = 0.081 06. • • • 

In combination with (29) it follows that 

(34) 1 z;'(s) < - ---2 + (2s+l} * 0.0811, 
(s-1) 

so that for O < s < 1 

(35) (s-l)z;'(s) > - s ~ 1 + (s-1)(2s+l) * 0.0811. 

Hence, for O < s < 1 we have 

(36) 1 (s-l)t'(s) + t(s) > z;(s) - s _ 1 + (s-1)(2s+l) * 0.0811 > 

I 2 > 1 9 
> 2 - (l+s-2s) * 0.0811 = 2 - 8 * 0.0811 > 0.4 

so that (15) also holds true for O < s < I, completing the proof. D 

COROLLARY I.I. The function (s-l)z;(s) is increasing on the positive reaZ 

a.xis. 

COROLLARY 1.2. Using the same notation as in the introduction we have, 
00 

(37) I -st t I ( I \ 
e ~(e )dt < s(s-1) < s - 1)' 

0 

2. THEOREM 2. 

(38) I t'(s) + ---2 > 0, 
(s-1) 

PROOF. From (see (24)) 

(39) I 
z;(s) = -- + -2 - s 

s -

00 I p 1 (x) 

s+l dx, 
X 

(s > 1). 

(s > O). 

(s > 0) 



': 

we obtain by partial integration that 

(40) 1 s 
~(s) = -s--- + 2 + TT - s(s+l)(s+2) 

where P3(x) is as in [3], p.524-525. 

Since (cf. [3], p.527) 

(41) 4 1 
<-< -

63 50 

we have 

00 

f P3 (x) 
-~ dx s+3 

X 

7 

(42) for all x E lR 

so that by (40) for s > 0 

(43) 

00 1 1 s 1 

f P3(x) + 50 + 2 +TT+ 50 s(s+l) - ~(s) -----,.-- dx = _s_-____ ..,___,,....,..._.,..... ____ _ 
s+3 s(s+l)(s+2) 

1 X 

Now observe that by (42) the left-hand side of (43) is decreasing in 

s for s > 0 so that for s > 0 

1 s 1 
- ~(s) s - + 2 +TT+ 50 s(s+l) 

(44) s(s+ 1 )(s+2) < lim {RHS of (43)} = 
s+0 

= ~ {- 1 +-1-+ 2s + 
1 - ~'(s)} = 

(s-1)2 12 50 s=0 

= ~ {-
1 1 1 

+ TT + 50 + 2 log 2n} < 0.01114. 

By the same argument the derivative of the RHS of (43) is negative for 

s > 0 which is equivalent to 

(45) ~'(s) + 2s + 
50 > 

1 + .!. + ..!.. + s(s+l) _ ~ (s) 
2 s - 1 2 12 50 

> - (3s +6s+2) s(s+l)(s+2 
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In view of (44) it follows that 

(46) 
I I 2s + I 2 

~:• (s) + --- > TI+ 50 - (3s +6s-2) * 0,01114 = 
(s-1)2 

= - 0.03342s 2 - 0.02684s + 0.08105. 

Since this polynomial is decreasing on the positive real axis and at 

s = it takeis the value 

(47) - 0.03342 - 0.02684 + 0.08105 > 0 

it follows th.at 

(48) I t'(s) + --- > O, 
(s-1)2 

(O<s~I). 

It is easily verified that for s > 0 

(49) 

ex, 1 I P4(x) + 720 
4 dx = s+ 

X 

1 s 
--- + - + - - t(s) 
s - 1 2 12 

s(s+1)(s+2)(s+3) 

Since 

(50) 
1 

p4 (x) + 720 > O for all X E JR. \ 2Z 

the left-hand side of (49) is decreasing ins so that 

(51) 

1 s 
1 + 2 + TI - t(s) 

(s+l)(s+2)(s+3) < lim {RHS of (49)} = 
s+l 

(s > 1). 

Since the derivative of the RHS of (49) is negative we also have after 

some calculations 

l l 
(52) t'(s) + --~2 > -12 -

(s-1) 

> - -
12 

{.!_+_I_ + _l_ + __ L f __ + .!_ + _s - t(s)} > 
s s + 1 s + 2 s + 3f l_s - 2 12 

s(s+l)(s+2)(s+3) ~-s1 + -- + + } * 
L s + s + 2 s + 3 

* 0.00026. 



This last polynomial is decreasing on the positive real axis and at s = 2 

it takes the value 

9 

1 f 1 1 1 1} 1 (53) 12 - 120 rz + 3 + 4 + 5 * 0.00026 = IT - 154 * 0.00026 > o.o4 

so that also 

(54) 1 
~•(s) + --- > 0, 

(s-1)2 
(1 < s ~ 2). 

Similarly as before we have for s > 2 

1 s 1 1 

(55) 
s - 1 +I+ IT - ~<s> 
----,.---,-.,..---,,-e---,.-,--- < 

s(s+l)(s+2)(s+3) 

1 + 2 + 6 - ~(2) 

120 < 0.000187 

and (since the derivative of the RHS of (49) is negative) 

* 0.0Q0J87. 

+ This polynomial is decreasing on ]R and at s = 3 it takes the value 

(57) 0.0833 ••• - 0.0639 ••• > 0 

from which it follows that (15) also holds true for 2 < s ~ 3. 

The following finishing touch of the proof is due to E. WATTEL. It is 

easily verified that 

(58) log 2 1 
< 2 , 2s 2(s-1) 

(s > 3) 

and 

(59) log 3 1 
< 

3s 2 , 
6(s-l) 

(s > 3). 

S1·nce for fixed s > 3 the function log xis convex on the inteval any xs 

[3,co) we have 

co 
(60) I 

n=4 

log n 
s 

n 

co 
log x dx = 1 + (s-1) log (3.5) 

xs (s-1) 2(3.5)s-l 
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and from this it is easily seen that 

co 

(6 l) I log n 1 
< 2 , s n=4 n 3(s-1) 

From (58), (59) and (61) it is clear 

co 

(62) - r;'(s) = log 2 + log 3 + l 
2s 3s n=4 

that 

log n < 
s 

n 

(s > 3). 

1 
2 , (s > 3) 

(s-1) 

so that (15) also holds for s > 3, completing the proof of theorem 2. D 

COROLLARY 2.1. The entire function r;(s) - s~I is increasing on lR.+. 

COROLLARY 2. 2 • 

(63) r;(s) - -- > Y 
s - I ' 

(s > l) 

This follows from corollary 2.1 and (23). 

COROLLARY 2.3. 

(64) (s-J)r;'(s) + r;~) > y, ( s > I) 

Indeed, it folJlows from ( 15) that 

(65) (s-I)r;'(s) > - s _ 1 , (s > I) 

so that 

(66) (s-l)r;'(s) + r;(s) > r;(s) - s _ 1 , ( s > I) 

and (64) follows from (63). 

3. In order to show that the technique illustrated above also applies to 

alternating series we prove in this section 

THEOREM 3. 

(63) n'(s) > O, (s > O) 



where 

(64) n(s) 
oo (-l)n+l 

= I s n 
(Res= a> 0). 

n=l 

PROO}?. Def:j:nie the function AJ: ]R • ]R by 

r½ 
if 2m < X < 2m+ I, m E Zl 

(65} :~J (x} = 0 if X E Zl 
J 

if 2m - 1 < X < 2m, m E Zl 2 

Then f01r s > 0 we have 

00 00 

00 (-l )n+ 1 

f 
>.. l (x) 

'~- I n(s) I -s -s 
(66) = = x d>.. 1 (x) = :X. l (x)dx = 

s s n=l n 1- X 
I 

00 

1 

f 
1 (x) 

dx. = - + s 
2 s+l 

X 

Define 
X 

(67) A2(x) = I :x. 1(t)dt, (X E ]R.). 

Then 
00 

(68) 
l 

= - + s 
2 

00 00 1 
I =-+ 
2 

I \ 2 (x) l s J 2 - A 2 (x) 
s(s+l) -- dx = -2 + -2 - s(s+l) --~- dx, s+2 s+ l 

so that 

(69) 

where 

(70) 

r1 ( s) 
1 s =-+--2 2 

X X 

00 

s(s+l) f ~ dx s+ 1 ' 
J X 

(s > 0) 

(s > 0) 

l 
p(x) = 2 - A2(x). 

It is easily seen that p(x) is continuous and that 

11 

(71) p(x) > 0, I 
(x 'f 2 + m; m i Zl), 

BIBUOTHEEK MATHEMATISCH cr:-rrrr 1 ,, " 

-AMSTERDAM·--
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from which it follows that 
co co 

(72) 1 s(s+l) I p(x) lo~ x d - (2s+l) f ~dx > n'(s) = - + s+2 X 2 s+2 
1 

X l X 

co 

1 
(2s+l) J.p(~) dx, (s > 0). > - -2 

Since 
J X 

(73) 1-s n(s) = (1-2 )s(s), (\fx E <C) 

it follows by logaritlunic differentiation that 

n'(s) s'(s) 1-s 
lo~ 2 (74) 

2 = + 
n (s) s(s) 1-s 

l - 2 

From (73) and (3 I) it follows that 

(75) n(0) = 
1 
2 

so that, using (32), we obtain 

1 { 2 log 2} l TI (76) n'(0) = 2 log 2TI + 1 _ 2 = 2 log 2 . 

Hence 

(77) 

(78) 

00 

j p(;) dx 

1 x 

co 1 s I -n(s) + 2 + 2 
= lim ~ dx = lim ------- = s+2 s(s+l) s+0 1 x s+0 

= {- n'(s) l} +-
2 s=0 

= -
l l I TI n'(0) + 2 = 2 - 2 log 2 <0.275. 

In view of (72) it follows that 

n'(s) > ½ - (2s+l) * 0.275, (s > 0), 

+ The RHS of (78) is decreasing on lR and is still positive at s = 0.41 so 

that 

(79) n'(s) > o; (0 < s ~ 0.41). 

We may proceed somewhat more accurately as follows. From (68) we obtain 

' 



(80) 

00 

1 J A2(x) 
n(s) = 2 + s(s+l) s+2 dx, 

X 

so that 

00 1 

(81) 1 s n(s) = 2 + 4 + s(s+l) J A2(x) - 2 
s+2 dx, 

X 

Defining 

X 

(82) A3 (x) = J (A2(t) - !) dt 

1 

we obtain from (81) that 

(83) n (s) 
1 s =-+-+ 
2 4 

00 I A3(x) 
s(s+l)(s+2) s+3 dx, 

J X 

Observing that 

,· < 
A3(x) = 0, 

it follows from (83) that 

(85) n' (s) > 1 x(s+l)(s+2) {! + =-+ + 
4 s + 1 s + 

> 1 
s(s+l)(s+2) {! + = - + + 

4 s + 1 s + 

Similarly as before one easily finds that 

13 

(s > 0) 

(s > 0). 

(s > O). 

(Vx E lR) 

00 

11 3 (x) 

2} J 
> dx = s+3 

1 X 

00 

"3 (x) 

2} I dx. 3 
1 X 

(86) 

00 00 

J "3 (x) dx = lim f A3(x) dx = lim 
x3 s+O s+3 s+O ] X 

1 s 
n (s) - 2 - 4 1 J t'\. 
s(s+l)(s+2) = 21n'(O) - 4f = 

l {1 ,r 1} = - - log - - - > - 0 01211 2 2 2 4 • 

so that for s > 0 

(87) n'(s) > .!. - s(s+l)(s+2) {.!. + 1 
1 + 1 2} * 0.01211. 4 s s + s + 

+ The RHS of (87) is decreasing on lR and assumas the value 0.25 - 11 * 0.01211 > 

> 0. 116 at s = 1 so that 

(88) n'(s) > 0, (O < s 
< 

1). 
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If s > 1 then it follows from (85) that 

00 

"-3 (x) 
(89) n 1 (s) 

1 s(s+l)(s+2) {! + 
1 I > ~4+ l + s dx s + + 2J s+3 = 

X 

00 

> .!. + s(s+l)(s+2) {.!. + + 
2} f 

"-3(x) 
dx = 4 s s + s + 4 

X 

so that in vieiw of 

oo I I 

(90) f "3(x) n(l) - 2 - 4 
4 dx = 6 = 

log 2 - 0.5 - 0.25 > _ 0.0095 
6 

X 

we find that 

(91) n' (s) > ¼ - s(s+l)(s+2) {¾ + s + + s + 2} * 0.0095. 

+ The RHS of (91) is decreasing on JR and assumes the value 

0.25 - 26 * 0.0095 = 0.003 at s = 2 so that 

(92) n'(s) > O, (J < s 1 2) • 

In order to complete the proof we observe that for any fixed s > 2 

h f . log x . d . [2 ) h t e unction-~ is ecreas1ng on , 00 sot at 

(93) n'(s) = (log 2 _ log 3) + (log 4 _ log 5\ + ..• 
2s 3s 4s 5s ) 

proving the theorem. D 

+ COROLLARY 3.1. n(s) is increasing on JR. 
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