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Monotonic approximation of integrals in relation to some inequalities for 

sums of powers of integers 

by 

J. van de Lune 

ABSTRACT 

This report mainly deals with the following question: For which (con­

tinuous) functions£: [0,1] + 1R is the sequence of canonical trapezoidal 

approximations of J~ f(x)dx monotonic? Most of the results are obtained by 

means of some new inequalities for sums and alternating sums of powers of 

integers. 
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tion. 





O. INTRODUCTION. 

The subject of this note was inspired by the following problem (pro­

posed by the author): For any positive integer n consider the regular 

n-gon P1, .•. ,Pn where 

(0. l) 
k 

= exp(- 21ri), 
n 

( k= l , ..• , n) . 

Let dk be the distance from Pk to Pn, i.e. 

(0.2) 

and let 

(0. 3) D 
n 

n 
= - I dk. 

n k=l 

00 & 
Prove that the sequence {Dn}n=l tends increasingly to its limit ( 0

' ¢) • 
This problem may be solved as follows: 

Since 

(0.4) 

D 
n 

n 
= I 

n k=l 
lexp(l 21ri) - l I = 

n 

I ( 2nk . 2nk) _ 1 I cos -- + i sin -- = 
n n 

I (2 - 2 cos Znk)½ = 
n k=I n 

2 n 
I 

n k=l 

1rk 
sin n' 

it is already clear that 

(0.5) 

In order 

lim D 
n n-,.oo 

I 

= 2 r 
) 

0 

sin rrx dx = 
4 
TI 

to show that rn }00 is increasing we recall that 
1 n-n=l 
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m 
(0.6) I 

k=l 
sin kz = 

. mz . (m+l)z sin 2 sin 2 
. z 

sm 2 

from which it is readily seen that 

1r 1T 
2 cos 2n 4 2n 

(O. 7) D = = -n n 1T 1T tan...!.. sin -2n 2n 

Now consider the function 1T 
qi: (0,2J -+ lR defined by 

(0.8) {

cp(t) = 

Hf> = o. 

t 
tan t ' 

1T (O<t< 2 ) 

It is easily verified that cp is decreasing and since 

(0. 9) D = ~ cp(...!..) 
n -rr 2n 

00 

it follows that {D} 1 is increasing. 
n n= 

We note that D may be written as n 

(0. 10) D = 
n 

2 n 
I 

n k=I 

. k-1 . k 
sin -- -rr + sin - -rr 

n n 
2 

which is equivalent to saying that ~D is then-th canonical trapezoidal n 
approximation of fbsin -rrx dx. Thus we have proved that the sequence of 

canonical trapezoidal approximations of !~sin -rrx dx is increasing. One 

might feel that this fact is not surprising since sin -rrx is concave on 

[0,1]. 

However, an example such as 

(0. 11) f(x) = 1- !xi, (-l~x~)), 

shows that the concavity off is not a sufficient condition for this 
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phenomenon. In this example f is concave but the corresponding sequence 

of trapezoidal approximations of~ f(x) dx is oscillating. We are thus led 

to the following question: For which (continuous) functions f: [0,1] • lR, 

say, is the sequence {Tn(f)}:=l' defined by 

(0.12) 
2 

monotonic? It seems that there is no simple general answer to this 

question. 

However, using the Euler-Maclaurin sunnnation formula, it is fairly 

easy to obtain a reasonably large class of functions f for which T (f) is 
n 

event;uaZZy monotonic. 

During the investigation of the question just described, it turned out 

that in order to obtain any results of some general nature it is very 

helpful to settle the question first for the functions f and f* defined 
s s 

by 

(0.13) 

and 

(0.14) 

f (x) 
s 

s = X , ; s>O) 

(-1.::_x~l ; sElN, s~2). 

In section 1 of this note it will be shown that T (f) is increasing 
n s 

(resp. decreasing) for any fixed s E (0,1) (resp. s>O), whereas in section 

2 we will prove that T (f*) is decreasing for any fixed integers~ 2. 
n s 

There is little doubt that all these statements are easily conjectured. 

However, we have not been able to furnish any really simple proofs. All 

our proofs are based upon some inequalities concerning the sums crn(s) and 

·• ( s I defined by 'n , 

(0. 15) 0 (s) = 
n 

n 

I 
k=l 
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and 

(0.16) d> (s) = ·n 

n-1 

I k s (-1) (n-k), 
k=O 

the most important ones being 

(0. 17) 

and 

(0.18) 

(s> l) 

(sdN, s~}) 

In section 3 we will discuss some applications of the above results. 

As an example we mention here the intriguing fact that the function 

(0.19) f(x) = !xi, (-l~x,;)) 

can not be approximated pointwise (let alone uniformly) by a sequence of 

polynomials {Pn(x)}:=l' every Pn(x) being of the form 

(0.20) 

where C is any real number whereas all coefficients p with even index m 
m 

are non-negative. 

1 

I. APPROXIMATIONS OF J xs dx, 

0 

(s>O). 

For n E 1N and s r= (!; we define 

( 1. I) 0 (s) = 
n 

n 

I 
k=l 
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In this section we will only be interested in the case s>O. Comparing 

a (s) n JI 
_n __ = - l (~n)s with 

O 
xs dx, one readily finds the well known in­

ns+! n k=l 

equalities 

s+l s+l 
( I • 2) _n __ < a (s) < _n_ + ns 

s+l n s+I ' (s>O). 

Also considering the canonical trapezoidal approximations of J~ xs dx it 

is easily seen that 

s+I s 
(I. 3) a (s) < _n __ + ~ 

n s+I 2 ' 
(O<s<l) 

and 

s+l s 
( I • 4) a (s) > _n __ + ~ 

n s+ I 2 ' 
(s> I), 

n(n+I) 
the case s=l being trivial: on(l)= 2 • Next we have the somewhat less 

trivial 

PROPOSITION I • l • 

(I. 5) 
ns+l (n+l)s ns (n+l)s+l 

------------ < a ( s) < ------.......;. __ _ 
( l) s+I s+I n ( l)s+l s+l ' n+ - n n+ - n 

(s>O). 

PROOF. We first show that 

(i.6) 
ns+I (n+l)s 

a (s) > 
n (n+l)s+I _ ns+l ' 

(s>O). 

This inequality is easily seen to be true for n = I and alls> 0. Assume 

that (1.6) still holds for n = l, •.. ,N and alls> 0. Then we have 

(I. 7) 
Ns+I (N+I) s 

oN+l(s) = (N+l)s + oN(s) > (N+l)s + I , 
(N+l)s+I _ Ns+ 

so that it suffices to show that 
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(1.8) 
Ns+I (N+l)s (N+l)s+I (N+Z)s 

(N+ I) s + ----c------c- > -...:---'-:---'---'----c--

(N+ I) s+ I - Ns+I (N+2)s+I - (N+l)s+I ' 

or equivalently, that 

(1.9) 

f 11 d 11 0 P . I h h or a NE ]N an a s > . utting -- = x, wet us want to prove tat N+I 

(I. IO) 

or equivalently, that 

(I.II) 
(l+x) s+I - I 

X 
> 

I _ (1-/)s+I 
2 

X 

Since for any fixed s > 0 the function xs+I is convex for x > O, it fol­

lows that (I.I I) holds for all x E (O,I), completing the proof of (1.6). 

Next we show that 

(I. 12) 
ns (n+l)s+J 

a (s) < 
n ( I)s+l s+l ' n+ - n 

(s>O). 

One may verify directly that (1. 12) holds for n = 1 and alls> O. Assume 

(1.12) still holds for n = l, ... ,N and alls> 0. Then we have 

(I. I 3) 

so that it suffices to show that 

(1.14) 
Ns (N+l)s+I 

(N+ I) s + ------­
(N+ I) s+ 1 _ Ns+ 1 

< 
(N+l)s (N+2)s+l 

(N+2)s+I - (N+l)s+l 

for all N E lN and all s > 0. Again, putting N!l = x, it is easilyverified 



that (1.14) is equivalent to 

( I. 15) 
(l-x2)s+l _ (I-x)s+l 

x(l-x) 
1 _ (l-x2)s+l 

< ----,-----
2 

X 

7 

2 2 Now observe that (1-x) - (l~x) = x(I-x), that O < 1-x < 1-x < 1 and that 

f f ' d O h f ' s+ I ' f 0 or any 1xe s > t e unction x 1s convex or x > • 

that (1.15) is true indeed, completing the proof. 0 

Defining 

( I. 16) 

and 

(I.I 7) 

0 (s) 
n 

U (s) = --n s+l 
n 

o (s) - ns 
Ln(s) = _n __ s_+_l __ 

n 

we have the following 

(ne:JN; SEU:) 

(nElN; se:<C) 

It follows 

PROPOSITION 1.2. Ifs> 0 then the upper (resp. lower) Riemann-sum 

U (s) (resp. L (s)) is decreasing (resp. increasing) inn. 
n n 

PROOF. In order to show that 

( 1 • 18) Un ( s) > Un+ 1 ( s ) , (s>O) 

we may just as well show that 

(I. 19) on(s) on+l(s) 
---> ----
ns+l (n+l)s+l ' 

(s>O) 

or, equivalently, that 

(I. 20) 
s+l (n+l) a (s) 

n 
s+l s > n {(n+l) + a (s)}, 

n 
(s>O) 

which may also be written as 
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ns+l (n+l)s 
o (s) > 

n ( 1 ) s+ 1 s+ 1 ' n+ - n 

Similarly, the inequality 

(1.21) - (s>O) 

is seen to be equivalent to 

ns (n+l)s+l 
o (s) < 

n ( l)s+l s+l ' n+ - n 

(s>O). 

(s>O). 

Hence, proposition 1.2 is just a restatement of proposition 1.1. O 

REMARK. During the preparation of this note J. H. VAN LINT notified the 

author that proposition 1.2 may be generalized as follows: If f: fa,bl • JR 

is monotonic and either convex or concave on [a,b] then the corresponding 

sequence of canonical upper (resp. lower) Riemann-sums is decreasing 

(resp. increasing). 

It should be noted that T (f) need not be monotonic for a convex 
n 

monotonic function f: Ca,b] • JR.As an example one may take an increasing 

convex function whose graph consists of two line segments joined at the 
. a+b 

point x = --
2 

Defining 

(1 .22) T (s) = ½{U (s) + L (s)}, n n n (nElN; SEG:), 

it l.S clear that if s 
r I approximation of • 0 X 

Concerning T (s) n 

THEOREM 1 . I . If O < s 

creasing) inn. 

s 
> 0 then T (s) is the n-th canonical trapezoidal n 

dx. 

we have the following 

< I (resp. s>I) then T (s) is increasing (resv. de­
n 



PROOF. 

Case 1. s > I. 

We want to prove that 

(l. 23) 

Since 

(I. 24) 

T (s) > T I (s) , n n+ . 

20 (s) - ns 
2Tn ( s) = __ n_s_+_l __ 

n 

(s>I). 

we may just as well prove that 

( 1. 25) 
20 (s) - ns 20 1(s) - (n+l)s __ n ____ > n+ 

s+ I 
n (n+l)s+I 

or equivalently, that 

(I. 26) 
ns+I (n+l)s + ns (n+l)s+I 

20 (s) > 
n (n+l)s+I _ ns+I 

(s>I), 

( s> I) • 

In order to prove (1,26) we proceed by induction. If n = I we have 

to check whether 

( I. 27) 
2s + 2s+I 

2 > -----
2s+l - 1 

(s>l) 

or equivalently, whether 

(!. 28) 
s 2 > 2, (s>I). 

It follows that ( 1. 26) holds for n = 1 and all s > l. Assume that 

(1.26) still holds for n = l, •.. ,N and alls> 1. Then we have 

9 

(1.29) 2°N+I (s) = 2(N+l)s + 20 (s) > 2(N+l)s + Ns+l (N+l)s +Ns (N+l)s+l 
N (N+l)s+I _ Ns+I 

so that it suffices to show that 
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( 1 . 30) 
s+ 1 (N+ I ) s + Ns (N+ l) s+ 1 

2(N+l)s + N > 
(N+ l ) s+ 1 Ns+ l 

(N+l)s+l (N+2)s + (N+l)s (N+2)s+l 
> -----'-----'--'"""-,,..--"-----'--i----=---

(N+2) s+ l (N+l)s+l 

for all N E lN and all s > 1 • 

After some simplifications in (1. 30) we see that we may just as well 

prove that 

(1.31) 
Ns + 2(N+l)s+l 

(N+l)s+l _ Ns+I 

s s+l 
> (N+l)(N+2) + (N+2) 

(N+2)s+l - (N+l)s+l 

. ( . l ) or equivalently, that as before, we write -- = x N+l 

s s+l 
( I. 32) 

s 
x(I-x) + 2 

s+l 
I - (I-x) 

( 1 +x) + (I +x) >....;_.-"-----:----=---s+l 
( I +x) - 1 

which may be rewritten as 

(1. 33) 

In cases is an integer greater than 1 we may prove (1.33) as 

follows: 

Using the binomial theorem the left hand side of ( 1. 33) rr..ay be writ·­

ten as 

( 1.34) 

00 

= 2{ l (s)(-I/ 
r=l r 

Now replace t 2 by z, 0 < z < I, so that it suffices to show that 

00 

( 1 • 35) 
, s r 
l ( 2r- l) z 

r=l 



for all z E (0,1). Since O < z < I we have 

( I • 36) 
r 2r-l 

z - z ~ 0 

for all r E lN • 

Since in addition all binomial coefficients in (1.35) are positive, 

the proof of (1.23) is complete in cases E lN, s .::_ 2. In order to prove 

theorem 1.1 for a generals> 1 we consider two cases 

Case 1. a. < s < 2. 

Observe that (1.33) is equivalent to 

(1.37) 
s s 

x (l+x) - (1-x) > 1 _ (l-x2)s, 
2 

which may also be written as 

00 

( 1 • 38) I -

This last inequality is equivalent to 

(1.39) 

2 or, putting x = z, 0 < z < 1, to 

00 

(1.40) \ { ( s ) + (- 1 ) r ( s) } z r ~ 0 , 
l 2r-I r -

r=2 

Clearly (1.40) may be rewritten as 

(1.41) 

Now we observe that if I < s < 2 then 

(O<x< 1), 

2r 
X 

(O<z<l). 

11 
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(1.42) 

and 

(1.43) 

(s ) > 0 for all r E lN 
2r 

Moreover it is easily seen that I (s)I is decreasing in r. 
r 

Hence, for al 1 r E lN we have 

(1.44) 

and 

(1.45) 

and the proof of case I.a is complete. 

Case 1.b. s > 2. 

First observe that 

(1.46) 2 s 2 (1-x) > I - sx, (O<x< 1; s> I) • 

Hence, in order to prove (1.33) it is sufficient to show that 

(1.47) 2(1-sx2) + x{(l+x)s - (I-x)s} - 2 ~ 0, 

or, equivalently, that 

( I. 48) (l+x)s - (1-x)s - 2sx .::_ 0. 

The left-hand side of (1.48) takes the value Oat x = O. Hence, it 

suffices to show that its derivative is positive for O < x < J, which is 

equivalent to proving that 



(1. 49) 
s-1 s-1 

(I +x) + (I -x) - 2 > 0, (O<x<I). 

Since (1.49) may be rewritten as 

(1.50) 
X X 

(O<x<I), 

s-1 and since x is convex for x > 0 ifs> 2, we see that (1.50) holds, 

completing the proof of case 1.b. 

Case 2. 0 < s < 1. 

In order to prove that T (s) < T 1(s) if O < s < 1 it suffices to n n+ 
prove that 

(1.51) (O<x<l). 

This inequality may be established similarly as in case 1. Just ob­

serve that if O < s < 1 then for all r E lN we have 

(1.52) 

whereas J<:)J is again decreasing in r. This completes the proof of 

theorem 1. 1. D 

From the above proof we obtain the following 

THEOREM 1,2. 

(1. 53) 
s+l (n+l)s + ns (n+ 1) s+ I 

2cr (s) > n 
n (n+l)s+l s+l 

- n 
(s>l) 

( I. 54) 
s+ l (n+l)s + s (n+l)s+l 

2cr (s) < n n 
n (n+l)s+l s+l 

- n 
(O<s<l). 

13 

REMARK. One might suggest to study the behaviour of T (s) by means of the 
n 

Euler-Maclaurin sununation formula. 

In order to avoid notational ambiguities concerning Bernoullian 
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numbers and polynomials we give the following definitions, 

The Bernoullian polynomials b (t) are defined by 
n 

(1.55) 
zt 

ze 

e 2 - l 

00 

I 
n=O 

b (t) 
n 

n 
z ' clzl<2n). 

The Bernoullian numbers b are defined by 
n 

(1.56) b = b (0), 
n n 

(n=0,1,2,3, ... ) 

or, equivalently, by 

00 

(1.57) __ z_ = I 
e 2 - l n=O 

n 
b z , 

n 

Putting 

( l • 58) B = n! b , 
n n 

(n=O, 1,2,3, •.. ), 

we have 

oo B 
(1.59) 

z ---= 
e:2: - l 

, n n 
l n! z ' 

n=O 
(!zl<2n). 

It is well known that for any polynomial f(x) 

b-1 b 

(1. 60) ) f(k) = f f(x) dx - ½{f(b) - f(a)} + L, 
k=a a 

N 
b { / 2 r-1 ) (b) _ f(2r-l) (a)}, + I 

r=l 2r 

where 

(J.61) N = [~] m denoting the degree of f(x). 
2 

Choosing a = 0, b = n, n E 1N, f(x) = xm, m E 1N, m ~ 2, we obtain 

from (I. 60) that 



(1.62) T (m) 
n 

n 
= - I 

n k=l 

f(k-l) + f(l) n-1 
n n = l { l f(l) + f(I) - f(O)} = 

2 n k=O n 2 

n [;] 

= ¾ {J f (.!) dx + I n b2r 
f(2r-l)(I) _ f(2r-l)(O)} 

2r-l = 

0 
I 

= I f(x) 

0 

I 
= -- + m+I 

r=l n 

c;J b 
dx + l 2r {f(2r-l)(I) _ f(2r-l)(O)} = 2r r=I n 

[I] b 
, 2r m! 
l 2r (m-2r+I) ! 

r=I n 

I I =--+--m+I m+I 

[E!J 
2 

I 
r=l 

1 B2r (m+) 
2r 2r · n 

Since B2 = ! > 0 it already follows that for m E lN, m ~ 2, Tn (m) is 

eventually decreasing inn. 

It is also well known that 

(I. 63) 
n 

b (t) = l, l (n) Bk tn-k, 
n n. k=O k 

(1.64) 

and that 

(t.65) B2k+l = O' for all k E lN • 

Using these facts it is easily seen that 

(1.66) T (m) = 
n 

m! bm+ 1 (n) 

m+l 
n 

I +-, 2n (m>2). 

15 

From (1.66) and the fact that T (m) is decreasing inn one is tempted 
n 

to conjecture that 

(I .67) 
bm+ I (x) 

m+l 
X 

+ --,,.--
m! 2x ' 

is decreasing in x for x ~ I. 

(x>O) 

One may verify that this conjecture is true indeed for some small 
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values of m. However, we can show that it is not true in general. If the 

conjecture is true then we must have 

(1.68) 
d bm+ 1 (x) 1 } 

dx { m+ 1 + m! 2x .5. O' (~1) 
X 

which is equivalent to 

( 1. 69) x b' 1 ( x) - (m+ 1 ) b 1 (x) - 1 
m+ m+ 2. m! 

m < 0 
X = ' (~I). 

I 
Since fork~ 1, bk(x) = bk_ 1(x), we have 

(I. 70) 
l m 

x bm(x) - (m+l) bm+ 1(x) - 2• m! x ~ 0, (~I) 

or, equivalently, 

(1. 71) (~1). 

In particular (1.71) must hold for x = 1, so that 

(1. 72) 

It is well known that 

( 1 • 7 3) b (1) = b (0), 
m m 

(~2) 

so that we arrive at 

(1.74) 

which may also be written as 

(1. 75) B - B - ! .::_ O. m m+l 

This inequality is true indeed for 2 ~ m ~ 13. However, choosing 



m = 14, we have 

(1. 76) 
7 l 

Bl4 - Bl5 - 1 = 6 - 0 - l = 6 > O, 

so that (l.75) is not true in general. Nevertheless, from (1.66) and 

theorem 1. l we obtain that the sequence 

(l.77) {
b m+ 1 (n) + 1 loo 

nm+ l m! 2nf n=l 

1.s decrea:s ing whenever m E 1N , m ~ 2. 

For later use we will now derive some estimates for 

(1. 78) 
def 

w (s) 
n 

n 
I (2k-l)s, 

k=I 

Defining 

(1. 79) 
2 w (s) 

t (s) = __ n __ 
n (2n)s+I , 

(nEJN; s>O). 

( nE JN , S > 0) , 

and observing that t (s) may be interpreted as then-th canonical tangent 
l n s 

approximation of f O x dx, we immediately obtain the inequalities 

(I. 80) 

and 

( I. 81) 

(2n)s+l 
2 wn(s) > s+l 

s+I 
2 w (s) < (Zn) 

n s+ I ' 

(O<s<l) 

( s> I) • 

In order to obtain better estimates for w (s) we prove the following 
n 

PROPOSITION l. 3. If O < s < 1 (resp. s> I) then t (s) 1,s decrt3asing (resp. 
n 

increasing) inn. 

PROOF. 

Case 1. 0 < s < I 

We want to prove that 

17 
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(1.82) t (s) > t 1 (s) , 
n n+ (O<s<I). 

One may verify that (1.82) is equivalent to 

(1.83) 
ns+I (2n+l)s 

w (s) > 
n ( l)s+I .s+I ' n+ - n 

(O<s<I). 

Again we proceed by induction: For n = I inequality (1.83) reads 

(1.84) 
3S 

I>----
2s+I _ 

which may be written as 

(1.85) 
Is+ 3s 
--2-- < Zs 

(O<s<I) 

(O<;s< I) • 

s 
Since x is concave on ~ x ~ 3 it follows that (1.85) holds, so 

that (1.83) is true for n = and alls E (O,I). 

Assume (1.83) still holds for n = l, ••• ,N and alls E (0,1). Then 

we have 

Ns+I (2N+l)s 
= (I. 86) wN+ I (s) (2N+l)s + wN(s) > (2N+I) s + 

(N+l)s+I - Ns+I 

= 
(N+l)s+I 

(N+l)s+I 

so that it suffices to prove 

( I. 87) 
(N+ I) s+ I (ZN+ I) s 
-----------,-- > 
(N+ I) s+ I _ Ns+ I 

(2N+l)s 
_ Ns+I 

that 

(N+l)s+I (2N+3)s 

(N+2)s+I_ (N+l)s+I , 

or, equivalently, that 

(1.88) (2N+l)s (2N+3)s --..a.---'--~>---------(N+l)s+I _ Ns+I (N+Z)s+l _ (N+l)s+I 

for all NE lN and alls E (0,1). 

Putting ZN! 3 = x it is clear that (1.88) is equivalent to 

= 



s (I-2x) > 
(I.89) 

(I-x)s+l - (I-3x)s+l = (I+x)s+l - (I-x)s+l 

which may also be written as 

(I. 90) 
(I+x)s+l - (1-x)s+l ____ ...__...,,2,...x ________ > 

Now observe that 

(I.91) 

and that 

(I+x)s+l - (I-x)s+l = 

2x 

(I+..2!._) s+l _ ( 1 __ x_) s+l 
I-2x I-2x 

2x 
I - 2x 

00 

\' s+l 
l (2r+l) 

r=0 

2r 
X = s + I + 

00 

\' s+l 
l (2r+ I) 

r=l 

(I.92) 
s+ I 

(2r+l) < O for all r E lN and all s E (O, I). 

2r 
X 

Since ._2-_ > x for 0 < x < ½ it follows that (1.90) holds, com-
1 - 2x 

pleting the proof of case 1. 

Case 2. s > 1. 

Now we have to show that 

(1. 93) tn(s) < tn+l(s), (s>l), 

or equivalently, that 

(1.94) 
ns+l (2n+l)s 

w ( s) < ---.:..,.---'----,-
n (n+l)s+l _ ns+l ' 

For n = this reads 

(1. 95) 
3S 

1 < ----2s+l _ 

or, equivalently, 

(1. 96) 
I S 3s 

2s < + 
2 

(s>I) 

(s>l) 

(s> 1). 

19 
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s which is true because of the convexity of x on the interval 1 ~ x ~ 3. 

Hence (1.94) holds for n = 1 and alls> 1. 

Assume (1.94) still holds for n = 1, ... N and alls> 1. Then we have 

(1.97) 
s Ns+l(ZN+l)s 

WN+l (s) = (ZN+!) + wN(s) < (ZN+l)s + ------------- = 
(N+ l) s+ I _ Ns+ 1 

and it clearly suffices to show that 

( I . 98) 
(N+l)s+l (ZN+l)s 

( 1 ) s+ l s+ 1 N+ - N 

(N+l)s+I (2N+3)s 
< 

(N+Z)s+l_ (N+1)s+1 

for all N E JN and all s > I . 

It follows that we are done as soon as we show that the function 

(1.99) 
(Zx+l)s 

(. l)s+I s+l ' ,x+ - X 

(x>O) 

is increasing in x for any fixed s > 1. 

Considering the derivative of (I.99) it suffices to prove that 

( I. 100) (s+l)(1+2x) {(J+x)s - xs} < 2s {(I+x)s+I - xs+l} 

for x > 0 ands> 1. 
t In order to prove (1,100) we replace x by l-t , 0 < t < I. This yields 

the equivalent inequality 

(1,101) 
. s s+l 

(s+1)(1+t)(l-t) < 2s(1-t ), ( O< t < 1 ; s > I ) , 

which may be rewritten as 

(I.102) 
s s+l (s-1) - (s+l)t + (s+1)t - (s-1)t > 0, (O<t<1; s>l). 

The left hand side of (1. 102) takes the value O fort= I and hence 

it suffices to show that its derivative is negative for O < t < 1. Hence, 
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we want to show that 

(1. 103) s-1 s -(s+I) + s(s+I) t - (s-l)(s+I) t < 0 

or, equivalently, that 

(1.104) -1 + s ts-I - (s-1) ts< O, (O<t<I; s>l). 

The left hand side of (1,104) takes the value Oat t = and hence 

it suffices to show that its derivative is positive for O < t < I. Hence, 

we want to show that 

(1.105) 
s-2 s-1 s(s-1) t - s(s-1) t > O, (O<t<l; s>l), 

or, equivalently, that 

(I. 106) (O<t< I ; s> I). 

Since this is trivially true the proof of proposition 1.3 is com­

plete. D 

From the above proof we obtain 

PROPOSITION I • 4. 

s+I s 
(1.107) w (s) > n (2n+I) 

s+I s+ I ' n (n+I) - n 
(O<s<I) 

and 

s+l (2n+l)s 
( I. 108) w (s) < n 

s+l s+I , 
n (n+I) - n 

(s>I). 
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l 

2. APPROXIMATIONS OF f lxls dx, 

-1 

(sEJN , s~2). 

Throughout this sections will denote an arbitrary but fixed integer 

greater than l (unless explicitly stated otherwise). 

DEFINITION. Let T*(s) (resp. t*(s)) be then-th canonical trapezoidal n n 
(resp. tangent) approximation of!_\ !xis dx, i.e., more explicitly, 

(2. l) 
* 2 n 2 2 2 n 2k 

T (s) = - l Hl-l+(k-1)-is + 1-l+k-is} = - l l-1 +-18, 
n n k= 1 n n n k= 1 n 

and 

(2.2) t: * cs) 2 ~ I -1 + ~I s. 
n = ; k~l n 

PROPOSITION 2. 1. 

(2.3) * * T (s) + t (s) = 4 T (s), n n n 

where T (s) has the same mean~ng as in (1.22). 
n 

PROOF. 

(2.4) 

- - 2- {2 a (s) - ns} = 4 T (s) - s+I n n 
n 

(compare (J.24)). D 

Combining this result with theorem I. I we obtain the following 

PROPOSITION 2.2. T*(s) + t*(s) is decreasing (inn). 
n n 

DEFINITION. For every n E JN let 

(2.5) ¢ (s) = 
:n 

n-1 
l (-l)k (n-k)s = 

k=O 

and 

s n -
s ,J:1-2 s n-1 (n-1) + ... + (-1; 2 + (-1) , 



(2.6) * * * o (s) = T (s) - t (s). n n n 

From (2.5) it is clear that 

(2. 7) (nE ]N ) • 

Moreover, we have the following 

PROPOSITION 2.3. 

(2. 8) o*(s) = - 2- {2¢ (s) - ns}. n s+I n 
n 

PROOF. 

(2.9) 

As a counterpart of proposition 2.2 we have 

PROPOSITION 2.4. o*(s) is decreasing (inn). 
n 

PROOF. In order to prove that 

(2.10) * * on (s) > on+I (s) 

we may just as well show that 

(2.11) S~I { 2¢n(s) - ns} > I { 2¢ I (s) - (n+I) s}, 
n (n+l)s+I n+ 

or, equivalently, that 

(2.12) (n+l) 8 +I {2¢ (s) - n8 } > ns+I {(n+l) 8 - 2¢ (s)}, 
n n 

which may be rewritten as 

(2.13) 
ns+l(n+l)s + ns(n+l)s+I 

2¢ (s) > 
n ( 1) s+ I s+ I n+ + n 

23 
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A direct proof of (2.13) by induction seems to be practically unfea­

sible. Therefore we make the following somewhat unethical detour. 

Observe that 

2ns (n+l)s > ns+l(n+l)s + ns(n+l)s+l 

(n+l)s+ ns (n+l)s+l+ ns+l 
(2.14) 

Indeed, putting.!.= x, it is easily seen that (2.14) is equivalent to n 

(2.15) 2 { (l+x)s+l + J} > (2+x) { (l+x)s + J} 

which may be simplified to 

(2.16) ( 1 +x) s > 1. • 
It follows that proposition 2,4 is a consequence of the following 

PROPOSITION 2.5. 

s s 2s 
(2. 1 7) < qi (s) < ___ n __ _ 

n8 + (n+l)s n (n-l)s + ns 

n (n+l) 

PROOF. One may verify that 

(2. 18) qi (2) 
n 

and 

(2.19) 

n(n+l) = ---'--2--"-

n(n+l) < 
2 

4 n 

(n-1)2 + n2 

so that (2.17) holds for s = 2 and all n E :IN. Hence it suffices to prove 

(2.17) for s ~ 3 and all n E ]N. It is easily verified that (2.17) holds 

for n = 1 and alls~ 3. 

Assume (2.17) still holds for n = l, ... ,N and all s~3. Then we have 

(2.20) 
s s 

qi (s) = (N+l)s - qi (s) < (N+l)s - N (N+l) 
N+l N Ns + (N+l)s 

(N+l)2s 
= --------

NS + (N+l)s 

so that the right-hand inequality in (2.17) also holds if n is replaced by 

N + J. 



We also have 

(2.21) <j>N+ 1 (s) 
N2s 

= (N+l)s - <j>N(s) ~ (N+l)s - ----- = 
(N-l)s + Ns 

(N-l)s(N+l)s + Ns(N+l)s - N2s 

= -------------------------. (N-l)s + NS 

so that it is sufficient to prove that 

(2.22) 
(N-l)s(N+l)s + Ns(N+l)s - N2s (N+l)s(N+2)s ___________ .______________ > -----------------

(N- l) s + Ns (N+l)s + (N+2)s 

for all N E lN • 

Putting!= x, it is easily seen that (2.22) is equivalent to 

(2. 23) 
__ (_1 _-x ___ ) s ___ ( l_+_x_)_s_+ ___ (_l +_x_) __ s ___ l > 

(1-x) s + 1 

(1 +x) s ( 1 +2x) s 

(l+x)s+ (1+2x)s 

25 

Crossmultiplication in (2.23) and some simplification leads to the equiva­

lent inequality 

(2.24) s 2s 2s s s (1-x) (l+x) + (l+x) - (l+x) - (1+2x) > O. 

which in its turn is equivalent to 

(2.25) 

Using the binomial theorem in (2.25) we see that we still have to 

show that 

s 2r (2.26) I (s) { (-l)r X 

r=l r 

First consider the first tliJo 

One 

everyone 

(2.27) 

may verify that the 

of them (except the 

s{-x2 + x - ~} + 
l+x 

r r X } > o. + X -
(l+x)r 

terms of this sum. 

following list of inequalities l. s such that 

last one) is a consequence of the next one: 



26 

(2.28) {-x + I s-1 3 X } --} + -- {x + X - > o, l+x 2 
(l+x/ 

(2.29) -2x 2 I } --+ (s-I){x + I - > o, l+x ( l+x) 2 

(2. 30) -Zx+ (s-1){1 - 1 } > 0 
l+x (l+x)2 = ' 

(2.31) -2x(l+x) + (s-I){(I+x) 2 - I}~ O, 

(2.32) -2 - 2x + (s-1)(2+x) ~ 0, 

(2. 33) (s-3)x ~ 4 - 2s. 

Since s > 3 we have that 4 - 2s < 0 ands - 3 ~ 0 so that (2.33) and 

hence (2.27) is true. 

For every remaining term in (2.26) corresponding to an even r 

(r=2a, say) we clearly have 

(2.34) 4a 2a 
X + X 

2a 
X ---=-- > O, 

(l+x/a 

so that it suffices to show that every term in (2.26) corresponding to an 

odd r ~ 3 (r=2a+l,say) is non-negative. 

Hence, we want to prove that 

(2. 35) 2(2a+l) 2a+I 
-x + X 

2a+l 
X ----- ~ o. 

( l+x/a+I 

It is clear that (2.35) does not hold for x = 1 but we may check di­

rectly that (2.25) is true in this case. When x = 1, (2.25) reads 

(2.36) 

which is equivalent to 

(2. 37) 
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Since (2.37) 1. s true for s = 2 it certainly holds for s > 3. 

Hence, it suffices to show (2.35) for 0 < X ~ ! , Again, one may check 

that in the following list of inequalities everyone of them (except the 

last one) 1. s a consequence of the next one (rEJN, r~)): 

2r r 
(2.38) 

r X . 
-x + X - r ~ O, 

( l+x) 

(2.39) r 1 ~ o, -x + -
(l+x)r 

(2.40) 
r r ( 1-x ) (l+x) ~ 0, 

(2.41) 
r (J-x ) (l+rx) ~ 0, 

(2.42) r-1 r 
r~ X + rx , 

(2.43) 2 3 
r ~ X + rx 

' 

(2.44) r ~ (r+ 1) 2 
X 

' 

(2.45) 2 r (~0 X < --= r+I 

(2.46) 0 < X < ½13 

(2. 4 7) 0 < X < I 
2 • 

Since (2.47) is true by assumption, the proof of proposition 2.5 and 

hence that of proposition 2.4 is complete. 0 

ch ( s) ·n 
COROLLARY 1 . --- is decreasing ( in n). 

s 
n 

PROOF. We have to prove that 

(2.48) 
qi (s) ,p 1(s) 

n n+ -------> 
n 5 (n+ 1) 8 

or, equivalently, that 
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(2.49) 
s (n+ 1) s s cp (s) > n {(n+l) -cp (s)}. n n 

Since (2.49) is equivalent to 

(2. 50) cp (s) > 
n ns + (n+l)s 

s s n (n+l) 

the corollary follows from (2.17). D 

REMARK. It is easily verified that 

cp (1) [!!.] + !{l+(-l)n+l} 
n 2 (2.51) =--------n n 

so that corollary does not hold for s = 1. 

This led us to the following open question: For which reals is cor­
ollary 1 true? 

COROLLARY 2. 

(2.52) lim 
n-+oo 

cp (s) 
n - ! s - • 
n 

PROOF. This is an immediate consequence of (2.17). D 

In the formulation of corollary 2, s has to be interpreted as an in­

teger greater than 1. However, it may be shown that (2.52) holds for any 

s > o. 

PROPOSITION 2.6. (Compare POLYA and SZEGO, Aufgaben und Lehrsatze aus der 

Analysis I, Springer, 1970, p.40, problem 27) 

cp (s) 
(2.53) lim n ! (s>O). = 2' s n-+oo n 

PROOF. 

Case 1. 0 < s < I ' 
In this s 0 so that case X l.S convex on x~ 



(2.54) L n-l { (n+l-2k)s + (n-l-2k)s} < 2 l n-l (n-2k)s 
02k~-2- O<k<--== 2 

from which it is readily seen that 

(2.55) -1+¢ 1(s)<¢(s). n+ n 

Consequently, we have 

(2.56) 

so that 

(2.57) 

2¢ (s) > (n+l)s - I 
n 

¢ (s) 
n lim inf --- > ½. 
ns 

From (2.56) we obtain 

(2.58) 

so that 

(2.59) lim sup 
n • co 

Case 2. s > I. 

= (n+l)s - ¢ (s) < (n+l)s - ½{(n+l)s - I}= Hn+I/+½ 
n 

¢ (s) n ! < 
s 2 • 

n 
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The cases= I follows from (2.51). Because of the concavity of xs on 

x ~ 0 we have similarly as before 

(2.60) 

from which we obtain 

(2.61) 

and 

s 2¢ (s) < (n+I) 
n 
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(2.62) 

It follows that (2.53) 1.S true. • 
* Returning to our study of T (s) we have n 

THEOREM 2 . 1 . T*(s) is decreasing (in nJ. n 

PROOF. Combine propositions 2.2 and 2.4. D 

COROLLARY. Por m, n E JN , m ,;, 2 we have 

(2.63) 
n-1 n-1 

(2n)m+l{2 l (2k-l)m + (2n-l)m} > (2n-l)m+l{2 l (2k)m + (2n)m} 
k=I k=l 

and 

(2.64) 
n-1 n m+ I I m m m+ I I m m (2n+l) {2 l (2k) + (2n) } > (2n) {2 l (2k-l) + (2n+l) }. 
k=l k=l 

PROOF. (2.63) is just another way of writing T;n_ 1(m) > T;n(m). Similarly 

(2.64) 1.s equivalent to T;n(m) > T;n+J(m). D 

REMARK. A direct proof of (2.63) and (2.64) seems to be difficult. 

We will now investigate the behaYiour of the canonical upper Riemann-

sums * U (s) 
n 

It is 

(2.65) 

and 

(2.66) 

. * corresponding to f. 
s 

easily verified that 

* 2 U ( s) = ---- { -1 + 2w ( s) } 
2n-1 (2n-l)s+l n 

2rJ ( s) 
* n u2n(s) = ---,-­s+ l 

n 

From the last two formulas we easily deduce that 

(2.67) * * U2n(s) = T2n(s) 
I 

+­
n 



and 

2 
(2.68) + _2_n_+_l - _(_2_n_+_l_)_s+-I • 

We are now in a suitable position to prove 

* 00 • PROPOSITION 2.7. The sequence {Un(s)}n=2 ~s decreasing. 

PROOF. We first consider 

(2.69) 

or, equivalently, 

(2,70) * T2n(s) 
I 

+ - > 
n 

2 +--------
2n+l (2n+l)s+l • 

* T2n+I (s) 

Since T;n(s) > T;n+l(s), it suffices to show that 

(2.71) ..!_> 
n 

I -- - -----
2n+I (2n+l)s+I • 

2 

Since this is trivially true we are done with (2.69). 

Next we consider 

(2.72) 

or, equivalently, 

(2. 73) 

It 

(2.74) 

which is 

(2.75) 

* 2 
T2n-l(s) +---2n-1 

clearly suffices to 

2 ---2n-l (2n-l)s+l 

equivalent to 

s (2n-1) ~ n, 

(n,;;))' 

I * I 
> T2n(s) +-

(2n-l)s+I n 

show that 

(n~=2)' > =n 

(n~2). 
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(n~2). 
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Since this is obviously true our proof is complete. D 

In order to be able to deal with the canonical lower Riemann-sums 

corresponding to f* we first prove the following 
s 

* PROPOSITION 2.8. t 2n+l(s) is increasing (inn). 

PROOF. First observe that 

(2.76) 
* 2s+2 

t (s) = ---- • a (s) 
2n+l (2n+l)s+l n 

Hence, we may just as well prove that 

(2. 77) 
crn(s) crn+l(s) 

----""" < -----
(2n+l )s+l (2n+3)s+l ' 

which may be shown to be equivalent to 

(2.78) 
(n+l)s(2n+l)s+l 

a (s) < 
n (2n+3)s+l - (2n+l)s+l • 

We will prove (2.78) by induction: For n = 1, (2.78) is equivalent to 

(2.79) 

It may be checked directly that (2.79) is true for s = 2. 

Now observe that (2.79) is equivalent to 

(2.80) 

so that it suffices to show that 

(2. 81 ) le I+.!_ )s > 1 
5 5 ' (s~3). 

Since 

(2.82) + ~ + s(s-1) > 

5 2•52 = 



it follows that (2.78) holds for n = 1 and alls .2:.. 2. 

In (2.78) we replace n by n - I, so that we still have to show that 

(2. 83) (cr n-1 ( s) =) cr (s) - ns < 
n (2n+l)s+l - (2n-l)s+l ' 

or, equivalently, that 

(2.84) 
ns(2n+l)s+l 

cr (s) < 
n (2n+l)s+l - (2n-l)s+l ' 

for all n E 1N • 

(2.84) is obviously true for n = 1. 

Assume (2.84) true for n = 1, ••• ,N and alls 2:,. 2. Then we have 

(2.85) 
s s+l 

crN+l(s) = (N+l)s + crN(s) < (N+l)s + N (2N+l) 
(2N+l)s+l - (2N-l)s+l , 

so that it suffices to show that 

(2.86) -__ N_s_(~2_N_+_l~)s_+_I ___ < (N+l)s(2N+3)s+l 
(N+l)s + 

(2N+l)s+l - (2N-l)s+l = (2N+3)s+l - (2N+l)s+l 

for all N E 1N • 

Putting½= x we arrive at the equivalent inequality 

(2. 87) 
(2+x)s+l < (l+x)s(2+3x)s+l 

(1 +x) s + --------------
(2+x) s+ l - (2-x)s+l = (2+3x)s+l - (2+x)s+l 

33 

In (2.87) replace x by 2x (so that from now on O < x ~!)in order to 

arrive at the equivalent inequality 

(2.88) (1+2x)s + 
(l+x)s+l < (1+2x)s(l+3x)s+l 

s+l s+l = s+l s+l • 
(l+x) - (1-x) (1+3x) - (l+x) 

After crossmultiplication and some simplification it turns out that 

we may just as well prove that 

(2.89) 

which is equivalent to 
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(2.90) 

Since 

(2.91) 

(l+x)s+l - (I-x)s+l 
---------------- > 2x 

(l+-x-)s+l _ (I--x-)s+l 
1+2x 1+2x 

2x 
1+2x 

s+l s+l s+l oo 

(l+x) - (1-x) ·=_I l (s+l) xr {l-(-l)r} = l ( s+l) 2r 
2x 2x r=O r r=O 2r+l x ' 

it follows that the left hand side of (2.90) is increasing in x on x > 0. 
X 

Observing that x > l+2x for all x > O, (2.90) follows and our proof 

is complete. D 

From the above proof we obtain the following. 

PROPOSITION 2.9. 

(2.92) 
ns(2n+l)s+l 

a (s) < 
n (2n+l)s+l - (2n-l)s+l • 

In the remaining part of this section we will investigate the beha-
. . * * viour of the canonical lower Riemann-sums L (s) corresponding to f. One 

n s 
may verify that 

(2.93) 
* 4 n-1 2k-l s 4{wn(s) - (2n-l)s} 

1 2n-l (s) = 2n-1 l <2n-l) = ____ s_+_l __ 
k=l (2n-l) 

and 

(2.94) 

* 00 PROPOSITION 2.10. The sequence {Ln(s)}n=2 is increasing. 

PROOF. We first consider 

(2.95) 

which may be shown to be equivalent to 

(2.96) 2(n+l)s+l w (s) < (2n+l)s+l a (s). 
n n 
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Using the inequalities (1.53) and (1.108) we see that it suffices to prove 

that 

(2.97) 
4(n+l)s+l ns+l(2n+l)s < (2n+l)s+l ns+l(n+l)s + ns(n+l)s+l 

(n+l)s+l _ ns+l (n+l)s+l _ ns 

. 2 
or, equivalently, that 4n(n+ 1) < (2n+ I) . It follows that (2. 95) holds. 

Next we consider 

(2.98) 

or, equivalently, 

(2.99) 

which may also be written as 

0 (s) o2n(s) 0 (s) 1 - (I+ _1_) s+ I 
I ( l + _1_) s+ 1 (2.100) n n 2n 

(2n)s+l 
< s+l +-s+l 2 2n 2n 

n n 

A direct proof of either of the last three inequalities seems to be 

quite cumbersome. Therefore we proceed as follows. 

* * We already know that u2n_ 1(s) > u2n(s), (n~2). This last inequality 

is equivalent to 

(2,101) 
1 

I {-1 + 2w (s)} > 
(2n-l)s+ n 

which may be rewritten as 

0 (s) a 2n (s) 0 (s) 
(2.102) 

n n 
< s+l (2n)s+1 s+l 

n n 

a (s) 
n 
s+ 1 

n 

l -
( 1 __ 1 ) s+ 1 

2n 

2 

1 

2(2n)s+l 
. 

Hence, in order to prove (2.100) it suffices to prove that 

0 (s) l - ( I- _I ) s+ 1 0 (s) 1 - (I+ _l_) s+ 1 

(2. 103) n 2n n 2n 
< 

s+I 2(2n)s+l s+l 2 n 2 n 

1 +-
2n 

(1+ _l_ )s+l 
2n 

+ 
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It is easily seen that (2.103) is equivalent to 

s s s+l 
(2.104) 0 (s) < n + n (2n+l) 

n · (Zn+ 1) s+ 1 - (2n-1) s+ 1 • 

Since (2.104) is true by proposition 2.9, our proof of proposition 2.10 is 

complete. D 

3. SOME APPLICATIONS. 

PROPOSITION 3. I. Let £; [O, I J • IR be such that T (£) is decreasing. Define 
n ~ 

f: [ 0, I J • JR by 

f (x) = f ( I -x) , (O~x,;;)). 

Then T (-f) is increasing and T (f) 'L-S decreasing. 
n n 

PROOF. T (-f) = -T (f) and T (f) = T (f). • n n n n 

PROPOSITION 3.2. Fo1° every k E JN let fk: [a,b] • :ITT be such that Tn(fk) 

is non-increasing inn and let~~ fk(x) = 0 for every x E [a,bl (strict­

ly speaking we only need this for a U x E [a, b J which are of the form 

x = a + p(b-a)i, p being rational). Then lim T (fk) = 0 for all n E JN. 
k• m n 

PROOF. Obvious . • 

PROPOSITION 3. 3. For every k E lN let fk: [a, b] • JR be such that fk (x) 

tends to a finite limit (=f(x), say) uJhen k • 00 • Also., for every k E lN, 

let T0 (fk) be non-in::reasing in n. Then Tn (f) LS also non-increasing. 

PROOF. Since T acts as a linear functional we have n 

= T (f-fk) + T 1(fk-f) + T 1 (f)c n n+ n+ 



Now let k • 00 and apply proposition 3.2. D 

PROPOSITION 3. 4. For every k E lN let fk: [ a, b] • lR be such that Tn (fk) 

is decreasing inn. Then Tn(k!l pk fk) is also decreasing inn whenever 

k!l pk fk converges point:wise on [a,b], the coefficients pk being non­

negative (at least one of them being positive). 

PROOF. Exercise. 0 

In all the examples which follow we will assume that a< b. 

APPLICATION I. Let f(x) = log x, (O<a~~b). It is clear that 

T (f) = T ($), where $(t) = log (a+(b-a)t), 
n n 

(O~t.S..1). 

Writing p = b:a (>O) we have 
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Ht) = log(b-a) + log(p+t) 
1-t 

= log(b-a) + log(p+l) + log(I- p+l ) • 

Since 

1-t ~ (I-tf 
log( 1- p+ I ) = - l k 

k=l k(p+l) 

it follows that T ($) is increasing. 
n I 

. { (2n) ! 1n . . . . Exerc~se. Show that _,____ is increasing inn. 
n! nn 

APPLICATION 2. Let f(x) ex = e , (a~~b), where c is some real constant. 

Case 1. c < 0. 

Put -c = p (>O) and x =a+ (b-a)t, (O~t<I), and observe that 

... 
e-px = e-p(a+(b-a)t) = -pb 

e ep(b-a)(I-t) = 

-pb = e 
oo k k 
l p (b-a) (1-t)k. 

k=O k! 

It follows that T (f) is decreasing inn. 
n 
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Case 2. c > O. Again, put x =a+ (b-a)t, (O.::_t.::_I). 

Since 

ex 
e 

co k k 
= ec(a+(b-a)t)= eca l c (b-a) tk 

k=O k! 

it follows that T (f) is decreasing inn. 
n 

Exercise. If f(x) = --- , (O<a~x~b), then T (f) is decreasing inn. 
ex - I n 

REMARK. So far we have only invoked theorem I.I and the easy propositions 

stated at the beginning of this section. 

APPLICATION 3. For any s E lR let f (x) = xs, (O<~). 
s 

Putting x =a+ (b-a)t, (O~~I) we have 

s s s f (x) =(a+ (b-a)t) = (b-a) (p+t) 
s 

a where p = b-a (>O), so that we may just as well study the behaviour of 

T (¢)where¢ (t) = (p+t)s, (p>O; O<t~I). 
n s s 

Case 1. s < o. 
Then we may write 

= (p+I)s I (s)(-I)r (I-t)r 
r=O r (p+I)r 

Since s < 0 we have (s)(-I)r > 0 for r = O,I,2,3, ••. and it follows 
r 

that Tn(¢s) is decreasing inn. 

Case 2. 

It is clear that ifs= 0 or ifs= I then T (¢) is constant. If 
n s 

0 < s < I then, as before, we have 

s s ~ s r (I-t)r 
(p+t) = (p+I) l (r)(-1) 

r=O (p+I)r 



Observing that 

r;>c-nr • { 
if r = 0 

0 if r E ]N 

it follows that Tn(¢s) is increasing inn. 

Case 3. s > 1 • 

Case 3a. S E ]N, 

Then we simply have 

(p+t)s = 

and it follows that T (¢) is decreasing. n s 

Case 3b. 2m+l < s < 2m+2 for some m E 1N u {O}. 

Then we have 

where z = 2t-l, so that -1 ~ z < 1. 
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It follows that we may just as well trace the behaviour of Tn for 

the function 

(2p+l+z) 8 s z s 
= (2p+l) (l+ 2p+l) . 

Since 

oo r 
( 1 + 2pz+ 1 ) s = I <;) __ z __ 

r=O (2p+l)r 

s and (2r) > 0 for all r E 1N, (note that the odd powers of z are irrele-

vant!) it follows from theorem 2.1 and proposition 3.4 that T (f) is n s 
decreasing. 
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Case 3c. 2m < s < 2m+I for some n E lN. 

We conjecture that T (f) is decreasing inn if 2m < s < 2m+I for n s 
some m E lN. 

However, so far we were unable to prove this. 

APPLICATION 4. Let s = 2m for some m E lN and define fs (x) 

Again, putting x =a+ (b-a)t, (O~t~,1) we have 

s a s 
f (x) = (b-a) ( -b + t) , s -a 

s = X , 

so that we may just as well study the behaviour of T for the function 
n 

<l>(t) = (a+t)s, (O~t< I; aElR). 

Case 1. a~ O. 

Then 

and it is clear from theorem I.I and proposition 3.4 that T (f) is decrea­n s 
sing inn. 

Case 2. a< 0. 

Put -a= p. Then we may just as well study the behaviour of T for the 
n 

function 

1/J(t) 
s 

= (p-t) ' (O~t2._l; p>O). 

Similarly as before it is easily seen that (putting z=2t-l) we may 

just as well study the behaviour of T for the function n 

(-l~z<l), 

or, equivalently, for the function 

µ(z) 
s 

= (!Hz) , (-l~z~l; 13E1R). 



Since 

µ(z) = 

and since the odd powers of z are irrelevant for our purpose, it follows 

that the relevant part of the above expansion of µ(z) is 

m l (2m) 82m-2r 
r=O 2r 

2r 
z 

so that Tn(µ) and hence Tn(fs) is decreasing by theorem 2.1 and proposi­

tion 3. 4. 

REMARK. Again, lets= 2m for some m E lN and let 

qi (x) 
s = (a.+x) , (O.s_~l) 

where a. is some real constant. 

Using the Euler-Maclaurin summation formula we find 

I 

f m qi(2r-l)(I) _ qi(2r-l)(O) 
Tn (qi) = qi (x)dx + rt b2r n2r = 

0 

I 

= f 
0 

I m 2 1 ( 1) 2m-2r+ I _ 2m-2r+ I 
( ) \ ( m+ ) B a+ a f x dx + 2m+ 1 l 2r 2r _________ 2_r ____ _ 

r=l n 

From this and application 4 we obtain that for any m E lN and any a. E 1R 

m Zm+l (a+l)2m-2r+I _ a.2m-2r+l 
l ( 2r ) B2r 2r 

r=I n 

is decreasing inn. 
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APPLICATION 5. The example described in the introduction (p.4J is left as 

an exercise to the reader. 
I n-

APPLICATION 6. We w; 11 prove th t th { (.!!._)n} 00 ~s · · L a e sequence n! n=I L increasing, 
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Taking logarithms we obtain 

I 
nn n I nn 

log(-,-) = - log::-;-
1 n 

= - l log kn = 
n k=l n. n n. 

1 n =-n I 
k=I 

k 1 n~l n-k 
log-= -- l log-- = 

n n k=O n 

1 n-1 n-1 oo 

=-- l log(l- k) = .!. l, l .!. (~)s = 
n k=O n n k=O s= 1 s n 

00 

= I 
s=l 

1 
- L (s) s n 

and our assertion follows easily (compare proposition 1.2). 

Since O < Ln(s) < s!l , (s>O) and~~ Ln(s) = s!t , (s>O) we also ob­

tain an alternative proof of the following well-known result 

1 n-
lim (~)n = 
n-+00 

00 

I t exp s=l s(s+I) = e. 

REMARK. Actually, we can prove more than asserted in the previous applica­

tion. 

If we define 

f(s) (s>O), 

then f is increasing on m.+. 

This may be seen as follows. Fors> 0 we have 

where µ(s) is Binet's function which may be represented by 

µ(s) = f-e-_ts_t {-t_l __ f+}}dt, 
6 e -

(s>O). 

See, for example, G. SA..~SONE and J. GERRETSEN, Lectures on the Theory 

of Functions of a Complex Va:l'iable, Noordhoff-Groningen, 1960, p.216. 



In order to prove that f(s) is increasing we may just as well show 

that log f(s) 1.s increasing. Taking logarithms we obtain 

s 
log f(s) =_!_log s = I - µ(s) + ½log 2TTs 

s ss e-s v'2rrs eµ(s) s 

It clearly suffices to show that 

I 
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d JJ (s) + ½log 2TTs = _s_{_JJ_'_C_s_)_+_2_s_}_-_{_JJ_(_s_)_+_!_l_o_g_2_1r_s_} 
~ls s 2 

< 0, (s>O), 

or, equivalently, that 

Since 

JJ( s) r;;-- es r(s+I) 
e I' 2 TT S = --------

it follows that 

s 
s 

s 

Jlim { JJ (s) + Hog 2TTs } 
s-1,0 

es f(s+I) 
= lim log------= 

s-1,0 ss 

From the integral representation of µ(s) we obtain 

so that 

Since 

00 

11 1 (s) = -f 
0 

-st 
e {-t--

e - I 

00 

1 I 
- + -}dt 
t 2 

I 

JJ (s) + 21s = I 
0 

e-st,_!_ - ---}d Lt t, 
et - I 

Jlim {_!_ - ---} = 0 
t-+«> t e t - I 

00 

I =-- + 2s 

(s>O). 

log I = 0. 

t }dt 
e - I 

it follows from the general theory of Laplace transforms that 
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lim s{µ'(s) + - 1-} = O. 2s 
s-1-0 

Consequently we have that lim ¢(s) = O, so that it suffices to show that 
s-rO 

ct,'(s) < 0 for s > O. 

Since 
00 

,i,, (s) d { , ( ) 1 } 
4' = s ds µ s + ~ = d J s ds 

00 
0 

= -s I 
0 

and 

t 
l - --- > O, 

et - 1 
(t>O) 

' it follows that indeed <P (s) < 0 for s > 0, completing the proof of our 

assertion. 

a (a) 
APPLICATION 7. If a< 0 then the sequence { :+I }:=I is increasing. 

We may prove this as follows: since n 

cr (a) n n-1 1 n-1 k ,.,, 
_n_ = - I cl) l = ..!. I (n-k) a = - I (1- - )"" 
n a+ I n k= 1 n n k=O n n k=O n 

(observe that (a.)(-l)s > 0 for s = 0,1,2,3, ••. ) 
s 

co 

= 

= ' (a.)(-l)s L (s), 
L. s n 

s=O 

our assertion follows from proposition 1.2 and the observation that if 

a< 0 then (a)(-l)s > 0 for all s E JN u {O}. 
s 

APPLICATION 8. Let O < µ < 1 and define 

2 1J f(x) = (1-x) , (-l,;,x2_l). 



(Note that this includes the case of a half circle). Then T (f) is in­
n 

creasing. 

In order to see this, one may argue as follows: for -1 < x ~ I, we 

have 

(X) 

I <~H-os 
s=O 

2s 
X 

Now observe that if O < µ < I then 

so that 

(X) 

= I + 

T (f) = 2 + L (µ)(-l)s r*(2s). 
n s=l s n 

(X) 

2s 
X 

Invoking theorem 2.1 it follows that T (f) is increasing. 
n 
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