212 research outputs found

    Linking surgical specimen length and examined lymph nodes in colorectal cancer patients.

    Get PDF
    AbstractAimThe number of examined lymph nodes (NLN) was associated with survival of stages II and III colorectal cancer (CRC) patients. Guidelines recommend examining at least 12 lymph nodes. This study investigated the influence of surgical specimen length on lymph node harvest and compliance with international guidelines.Materials and methodsThis population-based study included 4,724 cases of surgically treated CRC that were diagnosed from 2002 to 2008. Multivariate analyses were performed for the main study variables (age, gender, diagnosis at screening or in symptomatic patients, cancer site, staging, grading, number of positive nodes, neo-adjuvant treatment for rectal cancer, hospital were surgery was performed). Fractional polynomial models investigated the relationship between continuous variables and outcomes.ResultsThe NLN increased over time reaching ≥12 NLN in 64% of cases at the end of the study period. More NLN were associated with young age, right colon cancer, pT3–T4 disease, stages II and III and high grade. Fewer NLN were associated with short surgical specimen length and neo-adjuvant treatment in rectal cancer patients. Use of laparoscopy increased sharply over time.ConclusionsNLN increased over time in accordance with international guidelines. Surgical specimen length correlated with NLN which may determine therapeutic choices, particularly in stage II colon cancer. When harvested lymph nodes are under 10 in number and all are negative, chemotherapy is always recommended. As specimen lengths <20 cm were associated with a high risk of inadequate NLN counts, patients are at risk of over-treatment

    Oxidative status in different settings and with different methodological approaches compared by Receiver Operating Characteristic curve analysis

    Get PDF
    Objectives: To test the performance of different analytical approaches in highlighting the occurrence of deregulated redox status in various physio-pathological situations. Design and methods: 35 light and 61 heavy smokers, 19 chronic renal failure, 59 kidney transplanted patients, and 87 healthy controls were retrospectively considered for the study. Serum oxidative stress and antioxidant status, assessed by spectrophotometric Reactive Oxygen Metabolites (d-ROMs) and Total Antioxidant Capacity (TAC) tests, respectively, were compared with plasma free (F-MDA) and total (T-MDA)malondialdehyde, both quantified by isotope-dilution-gas chromatography\u2013mass spectrometry (ID-GC\u2013MS). Sensitivity, specificity and cut-off points of T-MDA, F-MDA, d-ROMs and TAC were evaluated by both Receiver Operating Characteristic (ROC) analyses and area under the ROC curve (AUC). Results: Only T-MDA assay showed a clear absence of oxidative stress in controls and significant increase in all patients (AUC 1.00, sensitivity and specificity 100%). Accuracy was good for d-ROMs (AUC 0.87, sensitivity 72.8%, specificity 100%) and F-MDA (AUC 0.82, sensitivity 74.7%, specificity 83.9%), but not high enough for TAC to show in patients impaired antioxidant defense (AUC 0.66, sensitivity 52.0%, specificity 92.9%). Conclusions: This study reveals T-MDA as the best marker to detect oxidative stress, shows the ability of d-ROMs to identify modified oxidative status particularly in the presence of high damages, and evidences the poor TAC performance. d-ROMs and TAC assays could be useful for routine purposes; however, for an accurate clinical data evaluation, their comparison versus a \u201cgold standard method\u201d is required

    Osteoporosis prevention in postmenopausal female workers : Beneficial effects of silicon dietary supplementation on oxidative status. A pilot study

    Get PDF
    In the last years, the employment of ageing women is increased, and the well-being of these workers, together with the prevention of chronic disabling diseases, is an issue of great importance. Moreover, as postmenopausal ageing is associated with the loss of bone density and consequent increased fracture risk, promoting bone health in these women could be the best strategy for avoiding osteoporotic fractures. We aimed to evaluate the effects of 3-month supplementation with a commercial antioxidant product containing Silica on oxidative status and bone markers in a sample of Italian female workers. Subjects were menopausal and osteopenic women (N=29, age 59.34\ub16.37, mean BMI 26.19\ub14.01 kg/m2). At baseline (T0) and after three-month treatment (T1) bone mineral density (BMD) was evaluated by phalangeal osteosonogrammetry. Haematological, serum biochemical parameters, reactive oxygen species (ROS), total antioxidant capacity (TAC), oxydated low-density lipoproteins (oxLDL) and urinary cross-links pyridinoline (PYD) and deoxypyridinoline (DPD) were assessed. Parametric or non-parametric tests were performed at T0 and T1. To analyse the possible association between two variables a linear correlation test was performed. At T0, slightly high levels of ROS (86% of subjects), oxLDL (59%), Total Cholesterol (T-Chol) (90%) and LDL-Chol (59%) were observed, together with suboptimal or deficient 25-OH vitamin D (98%) concentrations. At T1, oxLDL levels and the ratio oxLDL/LDL-Chol significantly decreased (p&lt;0.01). At T0 significant negative correlations between BMD T-score and cross-links were observed (DPD/Crea: r=-0.57, p=0.001; PYD/ Crea: r=-0.45, p=0.01). At T1, a significant reduction (p=0.03) was observed only for DPD (\u3bcg/L) but not for cross-links normalized by creatinine amounts. In conclusion 3-months Silica supplementation improves significantly oxidative status and bone resorption markers in most postmenopausal female workers, representing a complementary treatment for early phases of BMD reduction

    Polyphenol enriched diet administration during pregnancy and lactation prevents dysbiosis in ulcerative colitis predisposed littermates

    Get PDF
    Neonatal colonization of the gastrointestinal tract depends on mother microbiome, thus mother microbiota dysbiosis is transmitted to the offspring during the delivery and shaped by breastmilk characteristics. Here we used a murine model of UC predisposition (Winnie-/-) to evaluate the effects of maternal diet during pregnancy and lactation. Using heterozygous breeders, we obtained both Winnie-/- and C57BL/6 littermates from the same mother and compared their microbiota at weaning and adult age, using a diet enriched with 1% tomato fruit of a line – named Bronze – highly enriched in bioactive polyphenols, or Control tomato. Females received enriched diets two weeks before the beginning of the breeding and never stopped for the following six months. No significant effect was observed in regard to the percentage of Winnie-/- offspring, as with both diets the percentage was about 25% as expected. Winnie littermates from breeders fed with the Bronze-enriched diet showed reduced dysbiosis at 4 weeks of age if compared with Winnie under the Control tomato diet. This effect was then reduced when mice reached adult age. Conversely, the microbiota of C57BL/6 does not change significantly, indicating that fortified mothers-diet significantly contribute to preventing dysbiosis in genetically predisposed offspring, but has mild effects on healthy littermates and adult mice. An overall tendency towards reduced inflammation was underlined by the colon weight and the percentage of Foxp3+ cells reduction in Winnie mice fed with Bronze diet. Control diet did not show similar tendency

    Early Life Microbiota Colonization at Six Months of Age: A Transitional Time Point

    Get PDF
    Background: Early life gut microbiota is involved in several biological processes, particularly metabolism, immunity, and cognitive neurodevelopment. Perturbation in the infant's gut microbiota increases the risk for diseases in early and later life, highlighting the importance of understanding the connections between perinatal factors with early life microbial composition. The present research paper is aimed at exploring the prenatal and postnatal factors influencing the infant gut microbiota composition at six months of age. Methods: Gut microbiota of infants enrolled in the longitudinal, prospective, observational study "A.MA.MI" (Alimentazione MAmma e bambino nei primi MIlle giorni) was analyzed. We collected and analyzed 61 fecal samples at baseline (meconium, T0); at six months of age (T2), we collected and analyzed 53 fecal samples. Samples were grouped based on maternal and gestational weight factors, type of delivery, type of feeding, time of weaning, and presence/absence of older siblings. Alpha and beta diversities were evaluated to describe microbiota composition. Multivariate analyses were performed to understand the impact of the aforementioned factors on the infant's microbiota composition at six months of age. Results: Different clustering hypotheses have been tested to evaluate the impact of known metadata factors on the infant microbiota. Neither maternal body mass index nor gestational weight gain was able to determine significant differences in infant microbiota composition six months of age. Concerning the type of feeding, we observed a low alpha diversity in exclusive breastfed infants; conversely, non-exclusively breastfed infants reported an overgrowth of Ruminococcaceae and Flavonifractor. Furthermore, we did not find any statistically significant difference resulting from an early introduction of solid foods (before 4 months of age). Lastly, our sample showed a higher abundance of clostridial patterns in firstborn babies when compared to infants with older siblings in the family. Conclusion: Our findings showed that, at this stage of life, there is not a single factor able to affect in a distinct way the infants' gut microbiota development. Rather, there seems to be a complex multifactorial interaction between maternal and neonatal factors determining a unique microbial niche in the gastrointestinal tract

    Prenatal and postnatal determinants in shaping offspring's microbiome in the first 1000 days: Study protocol and preliminary results at one month of life

    Get PDF
    Background: Fetal programming during in utero life defines the set point of physiological and metabolic responses that lead into adulthood; events happening in "the first 1,000 days" (from conception to 2-years of age), play a role in the development of non-communicable diseases (NCDs). The infant gut microbiome is a highly dynamic organ, which is sensitive to maternal and environmental factors and is one of the elements driving intergenerational NCDs' transmission. The A.MA.MI (Alimentazione MAmma e bambino nei primi MIlle giorni) project aims at investigating the correlation between several factors, from conception to the first year of life, and infant gut microbiome composition. We described the study design of the A.MA.MI study and presented some preliminary results. Methods: A.MA.MI is a longitudinal, prospective, observational study conducted on a group of mother-infant pairs (n = 60) attending the Neonatal Unit, Fondazione IRCCS Policlinico San Matteo, Pavia (Italy). The study was planned to provide data collected at T0, T1, T2 and T3, respectively before discharge, 1,6 and 12 months after birth. Maternal and infant anthropometric measurements were assessed at each time. Other variables evaluated were: Pre-pregnancy/gestational weight status (T0), maternal dietary habits/physical activity (T1-T3); infant medical history, type of feeding, antibiotics/probiotics/supplements use, environment exposures (e.g cigarette smoking, pets, environmental temperature) (T1-T3). Infant stool samples were planned to be collected at each time and analyzed using metagenomics 16S ribosomal RNA gene sequence-based methods. Results: Birth mode (cesarean section vs. vaginal delivery) and maternal pre pregnancy BMI (BMI &lt; 25 Kg/m2 vs. BMI ≥ 25 Kg/m2), significant differences were found at genera and species levels (T0). Concerning type of feeding (breastfed vs. formula-fed), gut microbiota composition differed significantly at genus and species level (T1). Conclusion: These preliminary and explorative results confirmed that pre-pregnancy, mode of delivery and infant factors likely impact infant microbiota composition at different levels. Trial registration: ClinicalTrials.gov identifier: NCT04122612

    Dysbiosis triggers ACF development in genetically predisposed subjects

    Get PDF
    Background: Colorectal cancer (CRC) is the third most common cancer worldwide, characterized by a multifactorial etiology including genetics, lifestyle, and environmental factors including microbiota composition. To address the role of microbial modulation in CRC, we used our recently established mouse model (theWinnie-APCMin/+) combining inflammation and genetics. Methods: Gut microbiota profiling was performed on 8-week-old Winnie-APCMin/++ mice and their littermates by 16S rDNA gene amplicon sequencing. Moreover, to study the impact of dysbiosis induced by the mother’s genetics in ACF development, the large intestines of APCMin/++ mice born from wild type mice were investigated by histological analysis at 8 weeks. Results: ACF development in 8-week-old Winnie-APCMin/++ mice was triggered by dysbiosis. Specifically, the onset of ACF in genetically predisposed mice may result from dysbiotic signatures in the gastrointestinal tract of the breeders. Additionally, fecal transplant from Winnie donors to APCMin/++ hosts leads to an increased rate of ACF development. Conclusions: The characterization of microbiota profiling supporting CRC development in genetically predisposed mice could help to design therapeutic strategies to prevent dysbiosis. The application of these strategies in mothers during pregnancy and lactation could also reduce the CRC risk in the offspring

    A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams

    Get PDF
    Objective. A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting of μs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany). Approach. A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A ‘standard’ flashDiamond was also investigated and its response compared with the one of the specifically designed prototype. Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference 60Co irradiation. I-DRs as high as about 2 MGy s−1 were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type. Significance. The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived

    Born to be exported: COOH-terminal nuclear export signals of different strength ensure cytoplasmic accumulation of nucleophosmin leukemic mutants

    Get PDF
    Creation of a nuclear export signal (NES) motif and loss of tryptophans (W) 288 and 290 (or 290 only) at the COOH terminus of nucleophosmin (NPM) are both crucial for NPM aberrant cytoplasmic accumulation in acute myelogenous leukemia (AML) carrying NPM1 mutations. Hereby, we clarify how these COOH-terminal alterations functionally cooperate to delocalize NPM to the cytoplasm. Using a Rev(1.4)-based shuttling assay, we measured the nuclear export efficiency of six different COOH-terminal NES motifs identified in NPM mutants and found significant strength variability, the strongest NES motifs being associated with NPM mutants retaining W288. When artificially coupled with a weak NES, W288-retaining NPM mutants are not exported efficiently into cytoplasm because the force (W288) driving the mutants toward the nucleolus overwhelms the force (NES) exporting the mutants into cytoplasm. We then used this functional assay to study the physiologic NH2-terminal NES motifs of wild-type NPM and found that they are weak, which explains the prominent nucleolar localization of wild-type NPM. Thus, the opposing balance of forces (tryptophans and NES) seems to determine the subcellular localization of NPM. The fact that W288-retaining mutants always combine with the strongest NES reveals mutational selective pressure toward efficient export into cytoplasm, pointing to this event as critical for leukemogenesis
    • …
    corecore