3,136 research outputs found

    Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions

    Get PDF
    We perform viscous hydrodynamic calculations in 2+1 dimensions to investigate the influence of bulk viscosity on the viscous suppression of elliptic flow in non-central heavy-ion collisions at RHIC energies. Bulk and shear viscous effects on the evolution of radial and elliptic flow are studied with different model assumptions for the transport coefficients. We find that the temperature dependence of the relaxation time for the bulk viscous pressure, especially its critical slowing down near the quark-hadron phase transition at T_c, partially offsets effects from the strong growth of the bulk viscosity itself near T_c, and that even small values of the specific shear viscosity eta/s of the fireball matter can be extracted without large uncertainties from poorly controlled bulk viscous effects.Comment: 13 pages, 7 figures, 1 table. Submitted to Physical Review C. v2: corrected typos in several entries in Table

    Triggering the Formation of Halo Globular Clusters with Galaxy Outflows

    Full text link
    We investigate the interactions of high-redshift galaxy outflows with low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While atomic cooling allows star formation in larger primordial objects, such "minihalos" are generally unable to form stars by themselves. However, the large population of high-redshift starburst galaxies may have induced widespread star formation in these objects, via shocks that caused intense cooling both through nonequilibrium H2 formation and metal-line emission. Using a simple analytic model, we show that the resulting star clusters naturally reproduce three key features of the observed population of halo globular clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the momentum imparted in such interactions is sufficient to strip the gas from its associated dark matter halo, explaining why GCs do not reside in dark matter potential wells. Finally, the mixing of ejected metals into the primordial gas is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a given GC, while at the same time allowing for a large spread in metallicity between different clusters. To study this possibility in detail, we use a simple 1D numerical model of turbulence transport to simulate mixing in cloud-outflow interactions. We find that as the shock shears across the side of the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched material into > 20% of the cloud. Such estimates ignore the likely presence of large-scale vortices, however, which would further enhance turbulence generation. Thus quantitative mixing predictions must await more detailed numerical studies.Comment: 21 pages, 11 figures, Apj in pres

    MS 2053.7-0449: Confirmation of a bimodal mass distribution from strong gravitational lensing

    Full text link
    We present the first strong lensing study of the mass distribution in the cluster MS 2053-04 based on HST archive data. This massive, X-ray luminous cluster has a redshift z=0.583, and it is composed of two structures that are gravitationally bound to each other. The cluster has one multiply imaged system constituted by a double gravitational arc. We have performed a parametric strong lensing mass reconstruction using NFW density profiles to model the cluster potential. We also included perturbations from 23 galaxies, modeled like elliptical singular isothermal sphere, that are approximately within 1'x1' around the cluster center. These galaxies were constrained in both the geometric and dynamical parameters with observational data. Our analysis predicts a third image which is slightly demagnified. We found a candidate for this counter-image near the expected position and with the same F702W-F814W colors as the gravitational arcs in the cluster. The results from the strong lensing model shows the complex structure in this cluster, the asymmetry and the elongation in the mass distribution, and are consistent with previous spectrophotometric results that indicate that the cluster has a bimodal mass distribution. Finally, the derived mass profile was used to estimate the mass within the arcs and for comparison with X-ray estimates.Comment: To be published in ApJ (accepted

    Endoscopic injection sclerotherapy for bleeding varices in children with intrahepatic and extrahepatic portal venous obstruction: Benefit of injection tract embolisation

    Get PDF
    Background. The outcome of sclerotherapy for bleeding oesophagealvarices may be influenced by injection technique. In a previous study at our institution, sclerotherapy was associated with a high re-bleeding rate and oesophageal ulceration. Embolisation of the injection tract was introduced in an attempt to reduce injectionrelated complications.Methods. To determine the outcome and effectiveness of injectiontract embolisation in reducing injection-related complications, weretrospectively reviewed a series of 59 children who underwent injection sclerotherapy for oesophageal varices (29 for extrahepatic portal vein obstruction (EHPVO) and 30 for intrahepatic disease) in our centre.Results. Sclerotherapy resulted in variceal eradication in only 11.8% of the children (mean follow-up duration: 38.4 months). Variceal eradication with sclerotherapy alone was achieved in 20.7% and 3.3% of EHPVO and intrahepatic disease patients, respectively. Injection tract embolisation was successful in reducing the number of complications and re-bleeding rates. Complications that arose included: transient pyrexia (16.7%); deep oesophageal ulcers (6.7%); stricture formation (3.3%); and re-bleeding before variceal sclerosis (23%).Conclusion. Injection sclerotherapy did not eradicate oesophageal varices in most children. Injection tract embolisation by sclerosant was associated with fewer complications and reduced re-bleeding rates

    A Look At Three Different Scenarios for Bulge Formation

    Get PDF
    In this paper, we present three qualitatively different scenarios for bulge formation: a secular evolution model in which bulges form after disks and undergo several central starbursts, a primordial collapse model in which bulges and disks form simultaneously, and an early bulge formation model in which bulges form prior to disks. We normalize our models to the local z=0 observations of de Jong & van der Kruit (1994) and Peletier & Balcells (1996) and make comparisons with high redshift observations. We consider model predictions relating directly to bulge-to-disk properties. As expected, smaller bulge-to-disk ratios and bluer bulge colors are predicted by the secular evolution model at all redshifts, although uncertainties in the data are currently too large to differentiate strongly between the models.Comment: 19 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Models of Disk Evolution: Confrontation with Observations

    Get PDF
    We present simple models for disk evolution based on two different approaches: a forward approach based on predictions generic to hierarchical models for structure formation (e.g., Mo, Mao, & White 1998) and a backwards approach based on detailed modeling of the Milky Way galaxy (e.g., Bouwens, Cayon, & Silk 1997). We normalize these models to local observations and predict high-redshift luminosities, sizes, circular velocities, and surface brightnesses. Both approaches yield somewhat similar predictions for size, surface brightness, and luminosity evolution though they clearly differ in the amount of number evolution. These predictions seem to be broadly consistent with the high-redshift observations of Simard et al. (1999), suggesting that the B-band surface brightness of disks has indeed evolved by ~1.5 mag from z~0 to z~1 similar to the models and is not an artifact of selection effects as previously claimed. We also find a lack of low surface brightness galaxies in several high redshift samples relative to model predictions based on local samples (de Jong & van der Kruit 1994; Mathewson, Ford, & Buchhorn 1992).Comment: 34 pages, 9 figures, accepted to Ap

    Semi-Analytical Models for Lensing by Dark Halos: I. Splitting Angles

    Get PDF
    We use the semi-analytical approach to analyze gravitational lensing of quasars by dark halos in various cold dark matter (CDM) cosmologies, in order to determine the sensitivity of the prediction probabilities of images separations to the input assumptions regarding halos and cosmologies. The mass function of dark halos is assumed to be given by the Press-Schechter function. The mass density profile of dark halos is alternatively taken to be the singular isothermal sphere (SIS), the Navarro-Frenk-White (NFW) profile, or the generalized NFW profile. The cosmologies include: the Einstein-de Sitter model (SCDM), the open model (OCDM), and the flat \Lambda-model (LCDM). As expected, we find that the lensing probability is extremely sensitive to the mass density profile of dark halos, and somewhat less so to the mean mass density in the universe, and the amplitude of primordial fluctuations. NFW halos are very much less effective in producing multiple images than SIS halos. However, none of these models can completely explain the current observations: the SIS models predict too many large splitting lenses, while the NFW models predict too few small splitting lenses. This indicates that there must be at least two populations of halos in the universe. A combination of SIS and NFW halos can reasonably reproduce the current observations if we choose the mass for the transition from SIS to NFW to be ~ 10^{13} solar masses. Additionally, there is a tendency for CDM models to have too much power on small scales, i.e. too much mass concentration; and it appears that the cures proposed for other apparent difficulties of CDM would help here as well, an example being the warm dark matter (WDM) variant which is shown to produce large splitting lenses fewer than the corresponding CDM model by one order of magnitude.Comment: 46 pages, including 13 figures. Revised version with significant improvemen

    Contributions to the Power Spectrum of Cosmic Microwave Background from Fluctuations Caused by Clusters of Galaxies

    Get PDF
    We estimate the contributions to the cosmic microwave background radiation (CMBR) power spectrum from the static and kinematic Sunyaev-Zel'dovich (SZ) effects, and from the moving cluster of galaxies (MCG) effect. We conclude, in agreement with other studies, that at sufficiently small scales secondary fluctuations caused by clusters provide important contributions to the CMBR. At ℓ≳3000\ell \gtrsim 3000, these secondary fluctuations become important relative to lensed primordial fluctuations. Gravitational lensing at small angular scales has been proposed as a way to break the ``geometric degeneracy'' in determining fundamental cosmological parameters. We show that this method requires the separation of the static SZ effect, but the kinematic SZ effect and the MCG effect are less important. The power spectrum of secondary fluctuations caused by clusters of galaxies, if separated from the spectrum of lensed primordial fluctuations, might provide an independent constraint on several important cosmological parameters.Comment: LateX, 41 pages and 10 figures. Accepted for publication in the Astrophysical Journa

    Cluster Alignments and Ellipticities in LCDM Cosmology

    Full text link
    The ellipticities and alignments of clusters of galaxies, and their evolution with redshift, are examined in the context of a Lambda-dominated cold dark matter cosmology. We use a large-scale, high-resolution N-body simulation to model the matter distribution in a light cone containing ~10^6 clusters out to redshifts of z=3. Cluster ellipticities are determined as a function of mass, radius, and redshift, both in 3D and in projection. We find strong cluster ellipticities: the mean ellipticity increases with redshift from 0.3 at z=0 to 0.5 at z=3, for both 3D and 2D ellipticities; the evolution is well-fit by e=0.33+0.05z. The ellipticities increase with cluster mass and with cluster radius; the main cluster body is more elliptical than the cluster cores, but the increase of ellipticities with redshift is preserved. Using the fitted cluster ellipsoids, we determine the alignment of clusters as a function of their separation. We find strong alignment of clusters for separations <100 Mpc/h; the alignment increases with decreasing separation and with increasing redshift. The evolution of clusters from highly aligned and elongated systems at early times to lower alignment and elongation at present reflects the hierarchical and filamentary nature of structure formation. These measures of cluster ellipticity and alignment will provide a new test of the current cosmological model when compared with upcoming cluster surveys.Comment: 29 pages including 13 figures, to appear in ApJ Jan. 2005 (corrected typos, added reference

    Cosmological Effects of Powerful AGN Outbursts in Galaxy Clusters: Insights from an XMM-Newton Observation of MS0735+7421

    Get PDF
    We report on the results of an analysis of XMM-Newton observations of MS0735+7421, the galaxy cluster which hosts the most energetic AGN outburst currently known. The previous Chandra image shows twin giant X-ray cavities (~200 kpc diameter) filled with radio emission and surrounded by a weak shock front. XMM data are consistent with these findings. The total energy in cavities and shock (~6 \times 10^{61} erg) is enough to quench the cooling flow and, since most of the energy is deposited outside the cooling region (~100 kpc), to heat the gas within 1 Mpc by ~1/4 keV per particle. The cluster exhibits an upward departure (factor ~2) from the mean L-T relation. The boost in emissivity produced by the ICM compression in the bright shells due to the cavity expansion may contribute to explain the high luminosity and high central gas mass fraction that we measure. The scaled temperature and metallicity profiles are in general agreement with those observed in relaxed clusters. Also, the quantities we measure are consistent with the observed M-T relation. We conclude that violent outbursts such as the one in MS0735+7421 do not cause dramatic instantaneous departures from cluster scaling relations (other than the L-T relation). However, if they are relatively common they may play a role in creating the global cluster properties.Comment: 69 pages, 30 figures, accepted for publication in ApJ Main Journa
    • …
    corecore