1,785 research outputs found

    Finite temperature molecular dynamics study of unstable stacking fault free energies in silicon

    Full text link
    We calculate the free energies of unstable stacking fault (USF) configurations on the glide and shuffle slip planes in silicon as a function of temperature, using the recently developed Environment Dependent Interatomic Potential (EDIP). We employ the molecular dynamics (MD) adiabatic switching method with appropriate periodic boundary conditions and restrictions to atomic motion that guarantee stability and include volume relaxation of the USF configurations perpendicular to the slip plane. Our MD results using the EDIP model agree fairly well with earlier first-principles estimates for the transition from shuffle to glide plane dominance as a function of temperature. We use these results to make contact to brittle-ductile transition models.Comment: 6 pages revtex, 4 figs, 16 refs, to appear in Phys. Rev.

    Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry

    Get PDF
    Hydrodeoxygenated pyrolysis oils (HDO) are considered promising renewable liquid energy carriers. To gain insights in the various reaction pathways taking place during the hydrodeoxygenation reaction of pyrolysis oil, two-dimensional gas chromatography with time-of-flight mass spectrometric analyses (2D-GC-TOF-MS) was applied on the feedstock and product oil. Chromatographic parameters like injection temperature and column choice of the D-1-D-2 ensemble are discussed. Fractionation of the oils by hexane extraction was applied to show the distribution of analytes over the phases. Some 1000 and 2000 components in the pyrolysis and HDO oil, respectively could be identified and classified. The TOF-MS detection considerably improved the understanding of the molecular distribution over the D-1-D-2 retention time fields in the contour plot, in order to classify the analytes in functional groups. By group-type classification of the main components (>0.3% relative area), it was possible to characterize the oils by 250 and 350 analytes, respectively pyrolysis oil and HDO oil, describing 75% of the chromatographable fraction. The 2D-GC-TOF-MS method showed to be a useful and fast technique to determine the composition of (upgraded) pyrolysis oil and is potentially a very useful tool for exploratory catalyst research and kinetic studies. The 2D-GC-TOF-MS technique is not only useful for the chemical study as such, but also provides the basic knowledge for method transfer to a 2D-GC-FID (flame ionization detector) application. (C) 2008 Elsevier B.V. All rights reserved

    Improving Requirements Engineering within the European Space Industry

    Get PDF
    International audienceThe Next Generation Requirements Engineering (NextGenRE) (ESA/ESTEC Contract 4000101353/10/NL/SFe) project seeks to identify possibilities to improve the requirements engineering process within the European Space industry in connection with Model-based System Engineering (MBSE)

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    <p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p> <p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p> <p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p&gt

    Efficiency of free energy calculations of spin lattices by spectral quantum algorithms

    Full text link
    Quantum algorithms are well-suited to calculate estimates of the energy spectra for spin lattice systems. These algorithms are based on the efficient calculation of the discrete Fourier components of the density of states. The efficiency of these algorithms in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size.Comment: 9 pages, 4 figures; corrected typographical and minor mathematical error

    Temperature effects on dislocation core energies in silicon and germanium

    Full text link
    Temperature effects on the energetics of the 90-degree partial dislocation in silicon and germanium are investigated, using non-equilibrium methods to estimate free energies, coupled with Monte Carlo simulations. Atomic interactions are described by Tersoff and EDIP interatomic potentials. Our results indicate that the vibrational entropy has the effect of increasing the difference in free energy between the two possible reconstructions of the 90-degree partial, namely, the single-period and the double-period geometries. This effect further increases the energetic stability of the double-period reconstruction at high temperatures. The results also indicate that anharmonic effects may play an important role in determining the structural properties of these defects in the high-temperature regime.Comment: 8 pages in two-column physical-review format with six figure

    Dopaminergic and serotonergic alterations in plasma in three groups of dystonia patients

    Get PDF
    Introduction: In dystonia, dopaminergic alterations are considered to be responsible for the motor symptoms. Recent attention for the highly prevalent non-motor symptoms suggest also a role for serotonin in the pathophysiology. In this study we investigated the dopaminergic, serotonergic and noradrenergic metabolism in blood samples of dystonia patients and its relation with (non-)motor manifestations. Methods: Concentrations of metabolites of dopaminergic, serotonergic and noradrenergic pathways were measured in platelet-rich plasma in 41 myoclonus-dystonia (M-D), 25 dopa-responsive dystonia (DRD), 50 cervical dystonia (CD) patients and 55 healthy individuals. (Non-)motor symptoms were assessed using validated instruments, and correlated with concentrations of metabolites. Results: A significantly higher concentration of 3-methoxytyramine (0.03 vs. 0.02 nmol/L, p < 0.01), a metabolite of dopamine, and a reduced concentration of tryptophan (50 vs. 53 μmol/L, p = 0.03), the precursor of serotonin was found in dystonia patients compared to controls. The dopamine/levodopa ratio was higher in CD patients compared to other dystonia groups (p < 0.01). Surprisingly, relatively high concentrations of levodopa were found in the untreated DRD patients. Low concentrations of levodopa were associated with severity of dystonia (rs = −0.3, p < 0.01), depression (rs = −0.3, p < 0.01) and fatigue (rs = −0.2, p = 0.04). Conclusion: This study shows alterations in the dopaminergic and serotonergic metabolism of patients with dystonia, with dystonia subtype specific changes. Low concentrations of levodopa, but not of serotonergic metabolites, were associated with both motor and non-motor symptoms. Further insight into the dopaminergic and serotonergic systems in dystonia with a special attention to the kinetics of enzymes involved in these pathways, might lead to better treatment options
    • …
    corecore