327 research outputs found

    Tests of the Electroweak Sector of the Standard Model

    Get PDF
    The Electroweak sector of the Standard Model is reviewed and best fits are presented for its free parameters based on currently available experimental tests. The Standard Model remains an excellent descriptions of the available experimental data. The preferred mass range of the still elusive Higgs boson in the Standard Model is 114<mH<219114<m_{\mathrm{H}}<219 GeV at the 95% Confidence Level. A Standard Model Higgs in this mass range is likely to be observed in the years 2007--2010, either at the Tevatron or at the LHC.Comment: 20 pages, 38 figures, Plenary presentation at the HEP2005 International Europhysics Conference on High Energy Physics, EPS (July 21st-27th, 2005) in Lisboa, Portuga

    Snowmass 2021 Topical Report on Synergies in Research at Underground Facilities

    Full text link
    This is a Snowmass 2021 Topical Report for the Underground Facilities and Infrastructure Frontier on Synergies in Research at Underground Facilities: A broad range of scientific and engineering research is possible in underground laboratories, beyond the physics-focused activities described in the other Underground Facilities and Infrastructure Topical Reports. These areas of research include nuclear astrophysics, geology, geoengineering, gravitational wave detection, biology, and perhaps soon quantum information science. This UF Topical Report will survey those other scientific and engineering research activities that share interest in research-orientated Underground Facilities and Infrastructure. In most cases the breadth and depth of research aims is too large to cover in completeness and references to surveys or key documents for those fields are provided after introductory summaries. Additional attention is then given to shared, similar, and unique needs of each research area with respect to the broader underground research community's Underground Facilities and Infrastructure needs. Where potential conflicts of usage type, site, or duration might arise, these are identified.Comment: Snowmass 2021 Topical Report (UF5

    The Giant Radio Array for Neutrino Detection

    Get PDF
    High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND) project consists of an array of ∼ 105 radio antennas deployed over ∼ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10−11E−2 GeV−1 cm−2 s−1 sr−1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Large-scale and multipolar anisotropies of cosmic rays detected at the Pierre Auger Observatory with energies above 4 EeV

    Get PDF
    corecore