18,123 research outputs found
A fast ethanol assay to detect seed deterioration
The most common way to test seed quality is to use a simple and reliable but time- and space-consuming germination test. In this paper we present a fast and simple method to analyse cabbage seed deterioration by measuring ethanol production from partially imbibed seeds. The method uses a modified breath analyser and is simple compared to gas chromatographic or enzymatic procedures. A modified method using elevated temperatures (40°C instead of 20°C) shortened the assay time and improved its sensitivity. The analysis showed an inverse correlation between ethanol production and seed quality (e.g. the final percentages or speed of germination and the number of normal seedlings). The increase in ethanol production was observed when cabbage seeds were deteriorated by storage under ambient conditions or hot water treatments, both of which reduced the number of normal seedlings. Premature seeds produced more ethanol upon imbibition than mature seeds. Ethanol production occurred simultaneously with oxygen consumption, indicating that lack of oxygen is not the major trigger for ethanol production
Dielectric properties of charge ordered LuFe2O4 revisited: The apparent influence of contacts
We show results of broadband dielectric measurements on the charge ordered,
proposed to be mul- tiferroic material LuFe2O4. The temperature and frequency
dependence of the complex permittivity as investigated for temperatures above
and below the charge-oder transition near T_CO ~ 320 K and for frequencies up
to 1 GHz can be well described by a standard equivalent-circuit model
considering Maxwell-Wagner-type contacts and hopping induced AC-conductivity.
No pronounced contribution of intrinsic dipolar polarization could be found and
thus the ferroelectric character of the charge order in LuFe2O4 has to be
questioned.Comment: 4 pages, 3 figure
Low work function of the (1000) Ca2N surface
Polymer diodes require cathodes that do not corrode the polymer but do have
low work function to minimize the electron injection barrier. First-principles
calculations demonstrate that the work function of the (1000) surface of the
compound Ca2N is half an eV lower than that of the elemental metal Ca (2.35 vs.
2.87 eV). Moreover its reactivity is expected to be smaller. This makes Ca2N an
interesting candidate to replace calcium as cathode material for polymer light
emitting diode devices.Comment: 3 pages, 4 figures, accepted by J. Appl. Phy
Magneto-resistance in a lithography defined single constrained domain wall spin valve
We have measured domain wall magnetoresistance in a single lithographically constrained domain wall. An H-shaped Ni nano-bridge was fabricated by e-beam lithography with the two sides being single magnetic do- mains showing independent magnetic switching. The connection between the sides constraining the domain wall when the sides line up anti-parallel. The magneto-resistance curve clearly identifies the magnetic con- figurations that are expected from a spin valve-like structure. The value of the magneto-resistance at room temperature is around 0.1% or 0.4 Â. This value is shown to be in agreement with a theoretical formulation based on spin accumulation. Micromagnetic simulations show it is possible to reduce the size of the domain wall further by shortening the length of the bridge
Highlighting the Major Trade-Offs Concerning Anti-Terrorism Policies
Human-induced security, or terrorism, is a threat to wellbeing in Europe and beyond. In this Policy Briefing, we investigate the risks involved in terrorism, both with respect to the likelihood and with respect to the consequences of acts of terrorism. Furthermore, we provide a basic analysis of existing anti-terrorism policies, the costs involved in them and their effectiveness. We show that terrorism is a very broad term, but that one can make a number of broad policy recommendations, including the fact that the rational economic approach to terrorism recognizes that terrorists respond to the incentives they are provided with
Mechanisms of kinetic trapping in self-assembly and phase transformation
In self-assembly processes, kinetic trapping effects often hinder the
formation of thermodynamically stable ordered states. In a model of viral
capsid assembly and in the phase transformation of a lattice gas, we show how
simulations in a self-assembling steady state can be used to identify two
distinct mechanisms of kinetic trapping. We argue that one of these mechanisms
can be adequately captured by kinetic rate equations, while the other involves
a breakdown of theories that rely on cluster size as a reaction coordinate. We
discuss how these observations might be useful in designing and optimising
self-assembly reactions
- …