37 research outputs found

    Plant biodiversity assessment through pollen DNA metabarcoding in Natura 2000 habitats (Italian Alps)

    Get PDF
    11openInternationalInternational coauthor/editorMonitoring biodiversity is of increasing importance in natural ecosystems. Metabarcoding can be used as a powerful molecular tool to complement traditional biodiversity monitoring, as total environmental DNA can be analyzed from complex samples containing DNA of different origin. The aim of this research was to demonstrate the potential of pollen DNA metabarcoding using the chloroplast trnL partial gene sequencing to characterize plant biodiversity. Collecting airborne biological particles with gravimetric Tauber traps in four Natura 2000 habitats within the Natural Park of Paneveggio Pale di San Martino (Italian Alps), at three-time intervals in 1 year, metabarcoding identified 68 taxa belonging to 32 local plant families. Metabarcoding could identify with finer taxonomic resolution almost all non-rare families found by conventional light microscopy concurrently applied. However, compared to microscopy quantitative results, Poaceae, Betulaceae, and Oleaceae were found to contribute to a lesser extent to the plant biodiversity and Pinaceae were more represented. Temporal changes detected by metabarcoding matched the features of each pollen season, as defined by aerobiological studies running in parallel, and spatial heterogeneity was revealed between sites. Our results showcase that pollen metabarcoding is a promising approach in detecting plant species composition which could provide support to continuous monitoring required in Natura 2000 habitats for biodiversity conservation.openLeontidou, Kleopatra; Vokou, Despoina; Sandionigi, Anna; Bruno, Antonia; Lazarina, Maria; De Groeve, Johannes; Li, Mingai; Varotto, Claudio; Girardi, Matteo; Casiraghi, Maurizio; Cristofori, AntonellaLeontidou, K.; Vokou, D.; Sandionigi, A.; Bruno, A.; Lazarina, M.; De Groeve, J.; Li, M.; Varotto, C.; Girardi, M.; Casiraghi, M.; Cristofori, A

    Back and forth: day–night alternation between cover types reveals complementary use of habitats in a large herbivore

    Get PDF
    Context The Complementary Habitat Hypothesis posits that animals access resources for different needs by moving between complementary habitats that can be seen as ‘resource composites’. These movements can occur over a range of temporal scales, from diurnal to seasonal, in response to multiple drivers such as access to food, weather constraints, risk avoidance and human disturbance. Within this framework, we hypothesised that large herbivores cope with human-altered landscapes through the alternate use of complementary habitats at both daily and seasonal scales. Objectives We tested the Complementary Habitat Hypothesis in European roe deer (Capreolus capreolus) by classifying 3900 habitat-annotated movement trajectories of 154 GPS-monitored individuals across contrasting landscapes. Methods We considered day-night alternation between open food-rich and closed refuge habitats as a measure of complementary habitat use. We first identified day–night alternation using the Individual Movement - Sequence Analysis Method, then we modelled the proportion of day–night alternation over the year in relation to population and individual characteristics. Results We found that day-night alternation is a widespread behaviour in roe deer, even across markedly different landscapes. Day–night alternation followed seasonal trends in all populations, partly linked to vegetation phenology. Within populations, seasonal patterns of open/closed habitat alternation differed between male and female adults, but not in juveniles. Conclusion Our results support the Complementary Habitat Hypothesis by showing that roe deer adjust their access to the varied resources available in complex landscapes by including different habitats within their home range, and sequentially alternating between them in response to seasonal changes and individual life history.publishedVersio

    Back and forth: day–night alternation between cover types reveals complementary use of habitats in a large herbivore

    Get PDF
    Context The Complementary Habitat Hypothesis posits that animals access resources for different needs by moving between complementary habitats that can be seen as ‘resource composites’. These movements can occur over a range of temporal scales, from diurnal to seasonal, in response to multiple drivers such as access to food, weather constraints, risk avoidance and human disturbance. Within this framework, we hypothesised that large herbivores cope with human-altered landscapes through the alternate use of complementary habitats at both daily and seasonal scales. Objectives We tested the Complementary Habitat Hypothesis in European roe deer (Capreolus capreolus) by classifying 3900 habitat-annotated movement trajectories of 154 GPS-monitored individuals across contrasting landscapes. Methods We considered day-night alternation between open food-rich and closed refuge habitats as a measure of complementary habitat use. We first identified day–night alternation using the Individual Movement - Sequence Analysis Method, then we modelled the proportion of day–night alternation over the year in relation to population and individual characteristics. Results We found that day-night alternation is a widespread behaviour in roe deer, even across markedly different landscapes. Day–night alternation followed seasonal trends in all populations, partly linked to vegetation phenology. Within populations, seasonal patterns of open/closed habitat alternation differed between male and female adults, but not in juveniles. Conclusion Our results support the Complementary Habitat Hypothesis by showing that roe deer adjust their access to the varied resources available in complex landscapes by including different habitats within their home range, and sequentially alternating between them in response to seasonal changes and individual life history

    Settle down! Ranging behaviour responses of roe deer to different capture and release methods

    Get PDF
    16openInternationalInternational coauthor/editorThe fitting of tracking devices to wild animals requires capture and handling which causes stress and can potentially cause injury, behavioural modifications that can affect animal welfare and the output of research. We evaluated post capture and release ranging behaviour responses of roe deer (Capreolus capreolus) for five different capture methods. We analysed the distance from the centre of gravity and between successive locations, using data from 14 different study sites within the EURODEER collaborative project. Independently of the capture method, we observed a shorter distance between successive locations and contextual shift away from the home range centre of gravity after the capture and release event. However, individuals converged towards the average behaviour within a relatively short space of time (between 10 days and one month). If researchers investigate questions based on the distance between successive locations of the home range, we recommend (1) initial investigation to establish when the animals start to behave normally again or (2) not using the first two to three weeks of data for their analysis. We also encourage researchers to continually adapt methods to minimize stress and prioritize animal welfare wherever possible, according to the Refinement of the Three R’sopenBergvall, Ulrika A; Morellet, Nicolas; Kjellander, Petter; Rauset, Geir R; Groeve, Johannes De; Borowik, Tomasz; Brieger, Falko; Gehr, Benedikt; Heurich, Marco; Hewison, A J Mark; Kröschel, Max; Pellerin, Maryline; SaĂŻd, Sonia; Soennichsen, Leif; Sunde, Peter; Cagnacci, FrancescaBergvall, U.A.; Morellet, N.; Kjellander, P.; Rauset, G.R.; Groeve, J.D.; Borowik, T.; Brieger, F.; Gehr, B.; Heurich, M.; Hewison, A.J.M.; Kröschel, M.; Pellerin, M.; SaĂŻd, S.; Soennichsen, L.; Sunde, P.; Cagnacci, F

    Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods

    Get PDF
    Simple Summary The study of animal movement in wild, free ranging species is fundamental for advancing knowledge on ecosystem relationships and for conservation. The deployment of bio-logging devices to this purpose (often GPS-collars in large mammals) requires relatively invasive procedures, such as capture, handling and release. Capture and manipulation cause behavioural modifications that are largely understudied in wild species and may affect both the welfare of animals and the output of the studies. We evaluated post capture and release ranging behaviour responses of a small deer species (roe deer Capreolus capreolus) for five different capture methods across 14 study sites within the EURODEER collaborative project. Roe deer showed modifications in their movement behaviour, independently of the capture method. However, individuals recovered rapidly, converging towards the average behaviour within a relatively short interval of time (between 10 days and one month), demonstrating a general resilience to such stressful events. We encourage researchers to continually adapt capture and handling methods so as to minimize stress and prioritize animal welfare. The fitting of tracking devices to wild animals requires capture and handling which causes stress and can potentially cause injury, behavioural modifications that can affect animal welfare and the output of research. We evaluated post capture and release ranging behaviour responses of roe deer (Capreolus capreolus) for five different capture methods. We analysed the distance from the centre of gravity and between successive locations, using data from 14 different study sites within the EURODEER collaborative project. Independently of the capture method, we observed a shorter distance between successive locations and contextual shift away from the home range centre of gravity after the capture and release event. However, individuals converged towards the average behaviour within a relatively short space of time (between 10 days and one month). If researchers investigate questions based on the distance between successive locations of the home range, we recommend (1) initial investigation to establish when the animals start to behave normally again or (2) not using the first two to three weeks of data for their analysis. We also encourage researchers to continually adapt methods to minimize stress and prioritize animal welfare wherever possible, according to the Refinement of the Three R's

    Global raster dataset on historical coastline positions and shelf sea extents since the Last Glacial Maximum

    Get PDF
    Motivation: Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130 m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained: The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea levels <140 m) are presented, showing the extent of land (1), shelf sea (0) and deep sea (NULL) per time step of 0.5 kyr from 26 ka to the present. Spatial location and grain: The coastline age raster and shelf sea rasters have a global representation. The spatial resolution is scaled to 120 arcsec (0.333° × 0.333°), implying cells of c. 3,704 m around the equator, 3,207 m around the tropics (±30°) and 1,853 m in the temperate zone (±60°). Time period and temporal resolution: The coastline age raster shows the age of coastline positions since the onset of the LGM 26 ka, with time steps of 0.5 kyr. The 53 shelf sea rasters show, for each time step of 0.5 kyr, the position of the shelf seas (seas shallower than 140 m) and the extent of land. Level of measurement: Both the coastline age raster and the 53 shelf sea rasters are provided as TIFF files with spatial reference system WGS84 (SRID 4326). The values of the coastline age raster per grid cell correspond to the most recent coastline position (in steps of 0.5 kyr). Values range from 0 (0 ka, i.e., present day) to 260 (26 ka) in bins of 5 (0.5 kyr). A value of “no data” is ascribed to pixels that have remained below sea level since 26 ka. Software format: All data processing was done using the R programming language

    Large herbivore migration plasticity along environmental gradients in Europe: life-history traits modulate forage effects

    Get PDF
    The most common framework under which ungulate migration is studied predicts that it is driven by spatio–temporal variation in plant phenology, yet other hypotheses may explain differences within and between species. To disentangle more complex patterns than those based on single species/ single populations, we quantified migration vari-ability using two sympatric ungulate species differing in their foraging strategy, mating system and physiological constraints due to body size. We related observed variation to a set of hypotheses. We used GPS-collar data from 537 individuals in 10 roe Capreolus capreolus and 12 red deer Cervus elaphus populations spanning environmental gra-dients across Europe to assess variation in migration propensity, distance and tim-ing. Using time-to-event models, we explored how the probability of migration varied in relation to sex, landscape (e.g. topography, forest cover) and temporally-varying environmental factors (e.g. plant green-up, snow cover). Migration propensity varied across study areas. Red deer were, on average, three times more migratory than roe deer (56% versus 18%). This relationship was mainly driven by red deer males which were twice as migratory as females (82% versus 38%). The probability of roe deer migration was similar between sexes. Roe deer (both sexes) migrated earliest in spring. While territorial male roe deer migrated last in autumn, male and female red deer migrated around the same time in autumn, likely due to their polygynous mating system. Plant productivity determined the onset of spring migration in both species, but if plant productivity on winter ranges was sufficiently high, roe deer were less likely to leave. In autumn, migration coincided with reduced plant productivity for both species. This relationship was stronger for red deer. Our results confirm that ungulate migration is influenced by plant phenology, but in a novel way, that these effects appear to be modulated by species-specific traits, especially mating strategies.publishedVersio

    Wherever I may roam-Human activity alters movements of red deer (Cervus elaphus) and elk (Cervus canadensis) across two continents

    Get PDF
    Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activit

    Global raster dataset on historical coastline positions and shelf sea extents since the Last Glacial Maximum

    Get PDF
    Abstract Motivation Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130?m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea level

    Wherever I may roam—Human activity alters movements of red deer (Cervus elaphus) and elk (Cervus canadensis) across two continents

    Get PDF
    Human activity and associated landscape modifications alter the movements of ani-mals with consequences for populations and ecosystems worldwide. Species perform-ing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement ex-pression, using the standardized metric Intensity of Use, reflecting both the directional-ity and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topogra-phy, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strong-est driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric- based movement expression across widely distributed populations of a deer genus, contribut-ing to the understanding and prediction of animals' responses to human activity.publishedVersio
    corecore