7,408 research outputs found

    a possible use of smart thermography for the control of gfrp composite laminate

    Get PDF
    Abstract The development of techniques able to check the structural health of a wind blade is very important. An innovative and promising technique applicable at this aim is the SMArt thermography. It exploits the electro-thermal properties of SMArt composites, in order to detect the structural flaws using an embedded source. Such a system enables a built-in, fast, cost-effective and in-depth assessment of the structural damage as it overcomes the limitations of standard thermography. With the aim for developing a reliable diagnostic method based on SMArt thermography, a preliminary numerical model was implemented in order to simulate the heating and the subsequent cooling of a GFRP composite laminate with embedded SMA wires. The heat source was represented by the Joule effect originated in the SMA wires and supplied as power density. The analysis of the resulting thermal maps at different values of power density provided the optimal levels of current amplitude and period to be applied in the subsequent experimental applications

    Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional

    Full text link
    We study the structure of the constrained minimizers of the Gates-Lebowitz-Penrose free-energy functional FGLP(m){\mathcal F}_{\rm GLP}(m), non-local functional of a density field m(x)m(x), xTLx\in {\mathcal T}_L, a dd-dimensional torus of side length LL. At low temperatures, FGLP{\mathcal F}_{\rm GLP} is not convex, and has two distinct global minimizers, corresponding to two equilibrium states. Here we constrain the average density L^{-d}\int_{{\cal T}_L}m(x)\dd x to be a fixed value nn between the densities in the two equilibrium states, but close to the low density equilibrium value. In this case, a "droplet" of the high density phase may or may not form in a background of the low density phase, depending on the values nn and LL. We determine the critical density for droplet formation, and the nature of the droplet, as a function of nn and LL. The relation between the free energy and the large deviations functional for a particle model with long-range Kac potentials, proven in some cases, and expected to be true in general, then provides information on the structure of typical microscopic configurations of the Gibbs measure when the range of the Kac potential is large enough

    Kf evaluation in GFRP composites by thermography

    Get PDF
    Since the presence of a notch in a mechanical component causes a reduction in the fatigue strength, it is important to know the kf value for a given notch geometry and material. This parameter is fundamental in the fatigue design of aeronautical components that are mainly made of composites. kf is available in the literature for numerous types of notch but only for traditional materials such as metals. This paper presents a new practice, based on thermographic data, for the determination of the fatigue notch coefficient kf in composite notched specimens. The innovative aspect of this study is therefore to propose the application on composite materials of a new thermographic procedure to determine kf for several notch geometries: circular, U and V soft and severe notches. It was calculated, for each type of notch, as the ratio between the fatigue limits obtained on the cold and hot zone corresponding to the smooth and notched specimen, respectively. Consequently, this research activity provides, for the first time, a little database of kf for two particular typologies of composite materials showing a fast way to collect further values for different laminates and notch geometries

    Regularity of higher codimension area minimizing integral currents

    Full text link
    This lecture notes are an expanded version of the course given at the ERC-School on Geometric Measure Theory and Real Analysis, held in Pisa, September 30th - October 30th 2013. The lectures aim to explain the main steps of a new proof of the partial regularity of area minimizing integer rectifiable currents in higher codimension, due originally to F. Almgren, which is contained in a series of papers in collaboration with C. De Lellis (University of Zurich).Comment: This text will appear in "Geometric Measure Theory and Real Analysis", pp. 131--192, Proceedings of the ERC school in Pisa (2013), L. Ambrosio Ed., Edizioni SNS (CRM Series

    SBV regularity for Hamilton-Jacobi equations in Rn\mathbb R^n

    Get PDF
    In this paper we study the regularity of viscosity solutions to the following Hamilton-Jacobi equations tu+H(Dxu)=0inΩR×Rn. \partial_t u + H(D_{x} u)=0 \qquad \textrm{in} \Omega\subset \mathbb R\times \mathbb R^{n} . In particular, under the assumption that the Hamiltonian HC2(Rn)H\in C^2(\mathbb R^n) is uniformly convex, we prove that DxuD_{x}u and tu\partial_t u belong to the class SBVloc(Ω)SBV_{loc}(\Omega).Comment: 15 page

    Singularities of Nonlinear Elliptic Systems

    Full text link
    Through Morrey's spaces (plus Zorko's spaces) and their potentials/capacities as well as Hausdorff contents/dimensions, this paper estimates the singular sets of nonlinear elliptic systems of the even-ordered Meyers-Elcrat type and a class of quadratic functionals inducing harmonic maps.Comment: 18 pages Communications in Partial Differential Equation

    A semi-automatic methodology for tire’s wear evaluation

    Get PDF
    In this work, the authors aim at developing a reliable and fast methodology to evaluate the wear evolution in tire starting from a complete optical 3D scanning. Starting from a data cloud, a semi-automatic methodology was implemented in MATLAB to extract mean tread radial profiles in correspondence of the desired angular position of the tire. These profiles could be numerically evaluated to establish the presence of irregular wear and the characteristic parameter of the groove depth. The reliability and the robustness of this methodology was firstly tested by applying it to several synthetic case studies modeled in CATIA V5®, where ovalization and presence of defects were also simulated. The groove depth was determined with an error lower than 1% for the ideal model, while the introduction of ovalization and defects leaded to an error of 2.6% in the worst condition. In a second time, the methodology has been successfully applied to experimental measurements carried out in two different wear life of the tire, allowing the tracking of the wear phenomena through the evaluation of the progressive lowering of tread radial profiles

    Ontogenetic shift in the trophic role of the invasive killer shrimp Dikerogammarus villosus: a stable isotope study

    Get PDF
    none5noThe introduction of the amphipod Dikerogammarus villosus in European fresh waters is to date recognized as a threat to the integrity of invaded communities. Predation by D. villosus on native benthic invertebrates is assumed as the key determinant of its ecological impact, yet available information describe the species as a primary consumer as well as a carnivore depending on local conditions. Here, we assessed the trophic position (TP) of D. villosus in Lake Trasimeno, a recently invaded lentic system in central Italy, using the CN isotopic signatures of individuals captured in winter spanning two orders of magnitude in body size. TP estimations were compared with those characterizing the native amphipod Echinogammarus veneris and other representative invertebrate predators. On average, D. villosus showed a trophic position higher than E. veneris, and comparable with that of odonate nymphs. An in-depth analysis revealed that large-sized individuals had a trophic position of 3.07, higher than odonates and close to that of the hirudinean predator Erpobdella octoculata, while small-sized specimens had a trophic position of 2.57, similar to that of E. veneris (2.41). These findings indicate that size-related ontogenetic shifts in dietary habits may per se vary the nature of the interaction between Dikerogammarus villosus and native invertebrates from competition to predation. Information collated from published isotopic studies corroborated the generality of our results. We conclude that intra-specific trophic flexibility may potentially amplify and make more multifaceted the impact of the species on other invertebrate species in invaded food webs.openMancini F.; De Giorgi R.; Ludovisi A.; Vizzini S.; Mancinelli G.Mancini, F.; De Giorgi, R.; Ludovisi, A.; Vizzini, S.; Mancinelli, G

    Optical Diagnostics for Solid Rocket Plumes Characterization: A Review

    Get PDF
    In recent decades, solid fuel combustion propulsion of spacecraft has become one of the most popular choices for rocket propulsion systems. The reasons for this success are a wide range of applications, lower production costs, simplicity, and safety. The rocket’s plumes leave the nozzle at high temperatures; hence, the knowledge of produced infrared (IR) emissions is a crucial aspect during the design and tests of the rocket motors. Furthermore, rocket plume composition is given by N2, H2, H2O, CO and CO2, while solid rocket motors (SRM) additionally inject some solid particles, given by metal fuel additives in the propellant grain, i.e., aluminum oxide (Al2O3) particles. The main issue is the detection of the particles remaining in the atmosphere due to the exhaust gas of the solid rocket propulsion system that could have effects on ozone depletion. The experimental characterization of SRM plumes in the presence of alumina particles can be conducted using different optical techniques. The present study aims to review the most promising ones with a description of the optics system and their potential applications for SRM plume measurements. The most common measurement techniques are infrared spectroscopy imaging, IR imaging. UV–VIS measurements, shadowgraph, and Schlieren optical methods. The choice of these techniques among many others is due to the ability to study the plume without influencing the physical conditions existing in and around the study object. This paper presents technical results concerning the study of rocket engines plumes with the above-mentioned methods and reveals the feasibility of the measurement techniques applied

    Overweight and obese patients with nickel allergy have a worse metabolic profile compared to weight matched non-allergic individuals

    Get PDF
    A lack of balance between energy intake and expenditure due to overeating or reduced physical activity does not seem to explain entirely the obesity epidemic we are facing, and further factors are therefore being evaluated. Nickel (Ni) is a ubiquitous heavy metal implied in several health conditions. Regarding this, the European Food Safety Authority has recently released an alert on the possible deleterious effects of dietary Ni on human health given the current levels of Ni dietary intake in some countries. Pre-clinical studies have also suggested its role as an endocrine disruptor and have linked its exposure to energy metabolism and glucose homeostasis dysregulation. Ni allergy is common in the general population, but preliminary data suggest it being even more widespread among overweight patients. OBJECTIVES: The aim of this study has been to evaluate the presence of Ni allergy and its association with the metabolic and endocrine profile in overweight and obese individuals. METHODS: We have evaluated 1128 consecutive overweight and obese outpatients. 784 were suspected of being allergic to Ni and 666 were assessed for it. Presence of Ni allergy and correlation with body mass index (BMI), body composition, metabolic parameters and hormonal levels were evaluated. RESULTS: We report that Ni allergy is more frequent in presence of weight excess and is associated with worse metabolic parameters and impaired Growth Hormone secretion. CONCLUSIONS: We confirm that Ni allergy is more common in obese patients, and we report for the first time its association with worse metabolic parameters and impaired function of the GH-IGF1 axis in human subjects
    corecore