165 research outputs found

    ScheldeKrant 7

    Get PDF

    A Comprehensive Overview of Medical Error in Hospitals Using Incident-Reporting Systems, Patient Complaints and Chart Review of Inpatient Deaths

    Get PDF
    <div><h3>Background</h3><p>Incident reporting systems (IRS) are used to identify medical errors in order to learn from mistakes and improve patient safety in hospitals. However, IRS contain only a small fraction of occurring incidents. A more comprehensive overview of medical error in hospitals may be obtained by combining information from multiple sources. The WHO has developed the International Classification for Patient Safety (ICPS) in order to enable comparison of incident reports from different sources and institutions.</p> <h3>Methods</h3><p>The aim of this paper was to provide a more comprehensive overview of medical error in hospitals using a combination of different information sources. Incident reports collected from IRS, patient complaints and retrospective chart review in an academic acute care hospital were classified using the ICPS. The main outcome measures were distribution of incidents over the thirteen categories of the ICPS classifier “Incident type”, described as odds ratios (OR) and proportional similarity indices (PSI).</p> <h3>Results</h3><p>A total of 1012 incidents resulted in 1282 classified items. Large differences between data from IRS and patient complaints (PSI = 0.32) and from IRS and retrospective chart review (PSI = 0.31) were mainly attributable to behaviour (OR = 6.08), clinical administration (OR = 5.14), clinical process (OR = 6.73) and resources (OR = 2.06).</p> <h3>Conclusions</h3><p>IRS do not capture all incidents in hospitals and should be combined with complementary information about diagnostic error and delayed treatment from patient complaints and retrospective chart review. Since incidents that are not recorded in IRS do not lead to remedial and preventive action in response to IRS reports, healthcare centres that have access to different incident detection methods should harness information from all sources to improve patient safety.</p> </div

    Capillary pressure of van der Waals liquid nanodrops

    Full text link
    The dependence of the surface tension on a nanodrop radius is important for the new-phase formation process. It is demonstrated that the famous Tolman formula is not unique and the size-dependence of the surface tension can distinct for different systems. The analysis is based on a relationship between the surface tension and disjoining pressure in nanodrops. It is shown that the van der Waals interactions do not affect the new-phase formation thermodynamics since the effect of the disjoining pressure and size-dependent component of the surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano

    Main-Sequence Stars and the Star Formation History of the Outer Disk in the Large Magellanic Cloud

    Get PDF
    Using the Wide Field Planetary Camera 2 on the Hubble Space Telescope, we have obtained a deep color-magnitude diagram in V- and I-band equivalents for more than 2000 stars in a patch of the outer disk of the Large Magellanic Cloud LMC). Aperture photometry is feasible from these data with good signal-to-noise ratio for stars with V ≤ 25, which allows us for the first time to construct a color magnitude diagram for LMC disk stars on the lower main sequence, extending beyond the oldest main sequence turnoff point. We analyze the structure of the main-sequence band and overall morphology of the color-magnitude diagram to obtain a star formation history for the region. A comparison between the distribution of stars across the main-sequence band for M_v ≤ 4 and a stellar population model constrains historical star formation rates within the past 3 Gyr. The stellar populations in this region sample the outer LMC disk for stars with ages of 1 Gyr or older that have had time to spatially mix. The structure of the main-sequence band requires that star formation occurred at a roughly constant rate during most of the past ≈ 3 Gyr. However, the distribution of subgiant stars indicate that a pronounced peak in the star formation rate likely occurred about 2 Gyr ago, prior to which the star formation rate had not been enhanced for several Gyr. Studies over timescales of more than 3 Gyr require a separation of the effects of star formation history and the chemical evolution on the LMC color-magnitude diagrams, which is difficult to achieve without additional constraints. If lower main-sequence stars in the LMC have moderate metallicities, then the age for most LMC disk stars is less than about 8 Gyr

    CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells

    Get PDF
    Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1ΔE1E2-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1W529A was unaffected by the presence of neutralizing antibodies that inhibit E2–CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission

    Protein adsorption on preadsorbed polyampholytic monolayers

    Full text link
    The adsorption behaviour of five different globular proteins on pure silicon substrates and on preadsorbed polyampholytic monolayers has been investigated as a function of protein concentration. The prelayers were prepared by adsorption of the ampholytic diblock copolymer poly(methacrylic acid)-block-poly ((dimethylamino)ethyl methacrylate) (PMAA-b-PDMAEMA). This polyampholyte adsorbs in densely packed micelles directly from aqueous solution. Ellipsometry was used to determine the amount of adsorbed polyampholyte and protein. While ATR-IR spectroscopy gives information about the adsorption and desorption behaviour of the preadsorbed polyampholytic layer, the lateral structures of the dried films were investigated by scanning force microscopy (SFM). The amount of protein adsorbed was found to be strongly influenced by the preadsorbed polyampholyte compared to the adsorption on the pure silicon substrates. No displacement of the polyampholyte by the proteins was detected. In most cases the protein adsorption was reduced by the preadsorbed polyampholytic layer. The observed trends are explained by the change in electrostatic and hydrophilic characteristics of the substrates. Furthermore, the entropy of adsorption has to be taken into account.Peer reviewe

    Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    Get PDF
    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Toward understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescence effects of a light harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy, and in situ ellipsometry supports that the LH2 complexes are located inside the silica nanopores. Systematic fluorescence effects were observed and depend on degree of space confinement. In particular, the temperature dependence of the steady-state fluorescence spectra was analyzed in detail using condensed matter band shape theories. Systematic electronic-vibrational coupling differences in the LH2 transitions between the free and confined states are found, most likely responsible for the fluorescence effects experimentally observed
    corecore