3,337 research outputs found
Microstructure and chemical composition of Roman orichalcum coins emitted after the monetary reform of Augustus (23 B.C.)
A collection of ancient Roman orichalcum coins, i.e., a copper-zinc alloy, minted under the reigns from Caesar to Domitianus, have been characterised using scanning electron microscopy (SEM-EDS) and electron microprobe analysis (EMPA). We studied, for the first time, coins emitted by Romans after the reforms of Augustus (23 B.C.) and Nero (63-64 A.D). These coins, consisting of asses, sestertii, dupondii and semisses, were analysed using non- and invasive analyses, aiming to explore microstructure, corrosive process and to acquire quantitative chemical analysis. The results revealed that the coins are characterized by porous external layers, which are affected by dezincification and decuprification processes. As pictured by the X-ray maps, the elemental distribution of Cu and Zn shows patterns of depletion that in some cases penetrate in deep up to 1 mm. The composition of the un-corroded nucleus is a Cu-Zn alloy containing up to 30% of Zn, typical of coins produced via cementation process
Review of Heavy Quark Physics - theory
Recent progress in the theory of B-meson decays is reviewed with emphasis on
the aspects related to the B-factory data.Comment: 15 pages; Invited Plenary Talk at the 32nd International Conference
on High Energy Physics (ICHEP'04), Beijing, China, Aug. 16-22, 200
Local density of states in metal - topological superconductor hybrid systems
We study by means of the recursive Green's function technique the local
density-of-states of (finite and semi-infinite) multi-band spin-orbit coupled
semiconducting nanowires in proximity to an s-wave superconductor and attached
to normal-metal electrodes. When the nanowire is coupled to a normal electrode,
the zero-energy peak, corresponding to the Majorana state in the topological
phase, broadens with increasing transmission between the wire and the leads,
eventually disappearing for ideal interfaces. Interestingly, for a finite
transmission a peak is present also in the normal electrode, even though it has
a smaller amplitude and broadens more rapidly with the strength of the
coupling. Unpaired Majorana states can survive close to a topological phase
transition even when the number of open channels (defined in the absence of
superconductivity) is even. We finally study the Andreev-bound-state spectrum
in superconductor-normal metal-superconductor junctions and find that in
multi-band nanowires the distinction between topologically trivial and
non-trivial systems based on the number of zero-energy crossings is preserved.Comment: 11 pages, 12 figures, published versio
Multi-Valley Superconductivity In Ion-Gated MoS2 Layers
Layers of transition metal dichalcogenides (TMDs) combine the enhanced
effects of correlations associated with the two-dimensional limit with
electrostatic control over their phase transitions by means of an electric
field. Several semiconducting TMDs, such as MoS, develop superconductivity
(SC) at their surface when doped with an electrostatic field, but the mechanism
is still debated. It is often assumed that Cooper pairs reside only in the two
electron pockets at the K/K' points of the Brillouin Zone. However,
experimental and theoretical results suggest that a multi-valley Fermi surface
(FS) is associated with the SC state, involving 6 electron pockets at the Q/Q'
points. Here, we perform low-temperature transport measurements in ion-gated
MoS flakes. We show that a fully multi-valley FS is associated with the SC
onset. The Q/Q' valleys fill for dopingcm, and the
SC transition does not appear until the Fermi level crosses both spin-orbit
split sub-bands Q and Q. The SC state is associated with the FS
connectivity and promoted by a Lifshitz transition due to the simultaneous
population of multiple electron pockets. This FS topology will serve as a
guideline in the quest for new superconductors.Comment: 12 pages, 7 figure
Radiative Leptonic Decays
We analyze the radiative leptonic decay mode:
() using a QCD-inspired constituent quark model. The prediction:
makes this channel
experimentally promising in view of the large number of mesons which are
expected to be produced at the future hadron facilities.Comment: LaTex, 12 pages, 2 figures. A discussion on gauge invariance added.
Numerical results update
Entanglement production by quantum error correction in the presence of correlated environment
We analyze the effect of a quantum error correcting code on the entanglement
of encoded logical qubits in the presence of a dephasing interaction with a
correlated environment. Such correlated reservoir introduces entanglement
between physical qubits. We show that for short times the quantum error
correction interprets such entanglement as errors and suppresses it. However
for longer time, although quantum error correction is no longer able to correct
errors, it enhances the rate of entanglement production due to the interaction
with the environment.Comment: 7 pages, 3 figures, published versio
Effective gluon mass and infrared fixed point in QCD
We report on a special type of solutions for the gluon propagator of pure
QCD, obtained from the corresponding non-linear Schwinger-Dyson equation
formulated in the Feynman gauge of the background field method. These solutions
reach a finite value in the deep infrared and may be fitted using a massive
propagator, with the crucial characteristic that the effective ``mass''
employed depends on the momentum transfer. Specifically, the gluon mass falls
off as the inverse square of the momentum, as expected from the
operator-product expansion. In addition, one may define a dimensionless
quantity, which constitutes the generalization in a non-Abelian context of the
universal QED effective charge. This strong effective charge displays
asymptotic freedom in the ultraviolet whereas in the low-energy regime it
freezes at a finite value, giving rise to an infrared fixed point for QCD.Comment: 6 pages, 2 figures, Talk given at QCD@work 2007, Martina Franca,
Italy, 16-20 June 200
Second harmonic generation on self-assembled GaAs/Au nanowires with thickness gradient
Here we investigated the SH generation at the wavelength of 400 nm (pump laser at 800 nm, 120 fs pulses) of a "metasurface" composed by an alternation of GaAs nano-grooves and Au nanowires capping portions of flat GaAs. The nano-grooves depth and the Au nanowires thickness gradually vary across the sample. The samples are obtained by ion bombardment at glancing angle on a 150 nm Au mask evaporated on a GaAs plane wafer. The irradiation process erodes anisotropically the surface, creating Au nanowires and, at high ion dose, grooves in the underlying GaAs substrate (pattern transfer). The SHG measurements are performed for different pump linear polarization angle at different positions on the "metasurface" in order to explore the regions with optimal conditions for SHG efficiency. The pump polarization angle is scanned by rotating a half-wave retarder plate. While the output SH signal in reflection is analyzed by setting the polarizer in s or p configuration in front of the detector. The best polarization condition for SHG is obtained in the configuration where the pump and second harmonic fields are both p polarized, and the experiments show a SH polarization dependence of the same symmetry of bulk GaAs. Thus, the presence of gold contributes only as field localization effect, but do not contributes directly as SH generator
Obese patients with a binge eating disorder have an unfavorable metabolic and inflammatory profile
To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits
- …