6,812 research outputs found

    Improvement of heart rate recovery after exercise training in older people.

    Get PDF
    Twenty-four subjects aged 70 and older were retrospectively selected from our archives and screened for symptoms of cardiovascular disease. Baseline exercise test was negative for myocardial ischemia in all subjects. All subjects had completed an 8-week program, performed for a variety of indications and consisting of an aerobic physical training program including 30 minutes of cycling three times per week at 65% to 75% of maximum heart rate achieved at peak exercise test performed at enrollment, an educational intervention, dietary advice, and psychological support. All subjects underwent a cardiopulmonary exercise test (CPX) before and at the end of exercise training. At the end of each CPX, peak oxygen uptake (VO2peak), the rate of increase of ventilation per unit of increase of carbon dioxide production (VE/VCO2slope), and HRR were recorded. Twenty-five healthy subjects younger than 60 with no evidence of exercise-induced myocardial ischemia and not enrolled in any exercise training program were also retrospectively selected from our archives and used as a control group for analyzing HRR. These patients performed two exercise tests several weeks apart. Several studies have shown that changes in vagal tone can be used as an outcome tool that helps identify patients or subjects with or without cardiovascular disease at risk for a cardiovascular event, although the evidence of a prognostic value of HRR in older subjects without cardiovascular disease is rather poor. In this study, exercise training resulted in HRR improvement in healthy elderly subjects, suggesting that exercise training improves vagal/sympathetic balance in older subjects without cardiovascular disease as well. Whether the observed improvement in HRR may have long-term beneficial prognostic effects was not the aim of the study, although a beneficial effect might be postulated, in light of the Framingham dat

    Multi-Valley Superconductivity In Ion-Gated MoS2 Layers

    Get PDF
    Layers of transition metal dichalcogenides (TMDs) combine the enhanced effects of correlations associated with the two-dimensional limit with electrostatic control over their phase transitions by means of an electric field. Several semiconducting TMDs, such as MoS2_2, develop superconductivity (SC) at their surface when doped with an electrostatic field, but the mechanism is still debated. It is often assumed that Cooper pairs reside only in the two electron pockets at the K/K' points of the Brillouin Zone. However, experimental and theoretical results suggest that a multi-valley Fermi surface (FS) is associated with the SC state, involving 6 electron pockets at the Q/Q' points. Here, we perform low-temperature transport measurements in ion-gated MoS2_2 flakes. We show that a fully multi-valley FS is associated with the SC onset. The Q/Q' valleys fill for doping≳2⋅1013\gtrsim2\cdot10^{13}cm−2^{-2}, and the SC transition does not appear until the Fermi level crosses both spin-orbit split sub-bands Q1_1 and Q2_2. The SC state is associated with the FS connectivity and promoted by a Lifshitz transition due to the simultaneous population of multiple electron pockets. This FS topology will serve as a guideline in the quest for new superconductors.Comment: 12 pages, 7 figure

    The Effect of Different Electro-Motor Stimulation Training Intensities on Strength Improvement

    Get PDF
    The effect of different training intensities of electro-motor stimulation (EMS) on strength gains produced in the quadriceps femoris muscle group was investigated. Twenty-four subjects were randomly assigned to one of three groups: Control (C), Low Intensity (LI) trained at 25% of their maximum voluntary isometric contraction (MVIC), and High Intensity (HI) trained at 50% of MVIC. Results indicated a significant strength improvement in both training groups (p<0.01) following a three-week EMS training program. The HI group showed significantly greater strength gains (48.5%) than the LI group (24.2%) (p<0.01). A significant carry-over effect was also demonstrated in a three-week follow-up period, specifically in the HI group. Positive isokinetic strength changes in the concentric mode were observed in both training groups. In addition, a significant cross transfer effect was demonstrated in the contralateral homologous muscle group (p<0.01) for both HI and LI groups

    Integration of capillary and EWOD technologies for autonomous and low-power consumption micro-analytical systems

    Get PDF
    This work presents a miniaturized system combining, on the same microfluidic chip, capillarity and electrowetting-on-dielectric (EWOD) techniques for movement and control of fluids. The change in hydrophobicity occurring at the edge between a capillary channel and a hydrophobic layer is successfully exploited as a stop-and-go valve, whose operation is electronically controlled through the EWOD electrodes. Taking into account the variety of microfluidic operation resulting from the combination of the two handling techniques and their characteristic features, this work prompts the development of autonomous, compact and low-power consumption lab-on-chip systems

    Informed assessment of structural health conditions of bridges based on free-vibration tests

    Get PDF
    consolidated procedure for the evaluation of current structural health con-ditions in bridges consists in the comparison between estimated modal features from in-situ tests and numerical values. This strategy allows making informed decisions for existing bridge structures to ensure structural safety or serviceability. Free vibration tests are common in bridges monitoring since they allow a quick and cost-effective determination of dynamic infor-mation about the structure, using a sparse network of few sensors and avoid long-lasting monitoring campaigns. Exploiting an identification method based on a tuned version of Vari-ational Mode Decomposition and an area-ratio based approach, modal parameters are deter-mined from free vibration tests. This technique is applied to the dynamic identification of cables in a stay-cabled bridge assumed as case study: the obtained results prove reliability of the adopted method as a useful tool for objective dynamic identification purposes, with focus on the structural health conditions of bridges

    The physics of spreading processes in multilayer networks

    Get PDF
    The study of networks plays a crucial role in investigating the structure, dynamics, and function of a wide variety of complex systems in myriad disciplines. Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (i.e., "multiplexity") among their constituent components and/or multiple interacting subsystems. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent "multilayer" approach for modeling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. On one hand, it allows one to couple different structural relationships by encoding them in a convenient mathematical object. On the other hand, it also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.Comment: 25 pages, 4 figure

    Structure-function clustering in multiplex brain networks

    Get PDF
    A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally-connected neural populations: elucidating the subtle interactions between evoked ‘functional connectivity’ and the underlying ‘structural connectivity’ has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime

    Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and biocompounds recovery from Spirulina platensis

    Get PDF
    Spirulina platensis is interesting for the food industry due to its overall composition and high content in C-phycocyanin. However, the sensitivity of C-phycocyanin makes its extraction a delicate process. The present study focuses on assessing the use of ohmic heating (OH) in the recovery of C-phycocyanin and other relevant compounds as an alternative method to freeze-thawing or conventional heating. Different ohmic and conventional heating treatments were applied both to purified C-phycocyanin and Spirulina powder. Evaluation of fluorescence and circular dichroism showed that moderated electric fields increased C-phycocyanin stability. This was confirmed in the extraction trials which revealed that OH assisted extraction at higher temperatures (44°C), and shorter times (30min) allowed significant higher extraction yield of C-phycocyanin (45 mg/gdw Spirulina), in comparison with conventional heating and freeze-thawing. OH allowed also up to 80% higher yields in phenolic compounds and carbohydrates.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The study was also supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant (MSCA-RISE; FODIAC; 778388) and project OH2O – POCI-01-0145-FEDER-029145 (FCT and COMPETE2020). Pedro Santos is recipient of a fellowship supported by a doctoral advanced training (call NORTE-69-2015-15), funded by the European Social Fund under the scope of Norte2020 - Programa Operacional Regional do Norte (NORTE-08-5369-FSE-000036).info:eu-repo/semantics/publishedVersio
    • …
    corecore