9 research outputs found

    The Future of Our Seas: Marine scientists and creative professionals collaborate for science communication

    Get PDF
    To increase awareness of the current challenges facing the marine environment, the Future of Our Seas (FOOS) project brought together the expertise of scientists, public engagement experts and creatives to train and support a group of marine scientists in effective science communication and innovative public engagement. This case study aims to inspire scientists and artists to use the FOOS approach in training, activity design and development support (hereafter called the ‘FOOS programme’) to collaboratively deliver novel and creative engagement activities. The authors reflect on the experiences of the marine scientists: (1) attending the FOOS communication and engagement training; (2) creating and delivering public engagement activities; (3) understanding our audience; and (4) collaborating with artists. The authors also share what the artists and audiences learned from participating in the FOOS public engagement activities. These different perspectives provide new insights for the field with respect to designing collaborative training which maximizes the impact of the training on participants, creative collaborators and the public. Long-term benefits of taking part in the FOOS programme, such as initiating future collaborative engagement activities and positively impacting the scientists’ research processes, are also highlighted

    The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    Get PDF
    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reefVersión del editor3,87

    Building your own mountain: the effects, limits, and drawbacks of cold-water coral ecosystem engineering

    Get PDF
    Framework-forming cold-water corals (CWCs) are ecosystem engineers that build mounds in the deep sea that can be up to several hundred metres high. The effect of the presence of cold-water coral mounds on their surroundings is typically difficult to separate from environmental factors that are not affected by the mounds. We investigated the environmental control on and the importance of ecosystem engineering for cold-water coral reefs using annotated video transect data, spatial variables (MEMs), and hydrodynamic model outputs in a redundancy analysis and with variance partitioning. Using available hydrodynamic simulations with cold-water coral mounds and simulations where the mounds were artificially removed, we investigated the effect of coral mound ecosystem engineering on the spatial configuration of reef habitat and discriminated which environmental factors are and which are not affected by the mounds. We find that downward velocities in winter, related to non-engineered environmental factors, e.g. deep winter mixing and dense-water cascading, cause substantial differences in reef cover at the broadest spatial scale (20–30 km). Such hydrodynamic processes that stimulate the food supply towards the corals in winter seem more important for the reefs than cold-water coral mound engineering or similar hydrodynamic processes in summer. While the ecosystem-engineering effect of cold-water corals is frequently discussed, our results also highlight the importance of non-engineered environmental processes. We further find that, due to the interaction between the coral mound and the water flow, different hydrodynamic zones are found on coral mounds that likely determine the typical benthic zonations of coral rubble at the mound foot, the dead coral framework on the mound flanks, and the living corals near the summit. Moreover, we suggest that a so-called Massenerhebung effect (well known for terrestrial mountains) exists, meaning that benthic zonation depends on the location of the mound rather than on the height above the seafloor or water depth. Our finding that ecosystem engineering determines the configuration of benthic habitats on cold-water coral mounds implies that cold-water corals cannot grow at deeper depths on the mounds to avoid the adverse effects of climate change.</p

    Trophic ecology of <i>Mnemiopsis leidyi</i> in the southern North Sea: a biomarker approach

    No full text
    The non-indigenous ctenophore Mnemiopsis leidyi A. Agassiz 1865 was first observed in the southern North Sea in 2006 and has since then frequently been encountered. Knowledge on the diet, trophic position and interactions with other components of the pelagic food web will largely contribute to assess the impact of this species on the ecosystem. Using both stable isotope (SI) and fatty acid (FA) analysis, this study revealed spatial and temporal variation in the trophic ecology of M. leidyi in different ecosystems in the southern North Sea. Based on the isotopic composition, spatial differences were largely driven by variation at the base of the food web rather than diet changes of M. leidyi in the different ecosystems. Temporal variation in M. leidyi SI composition was also influenced by shifting baseline values and driven by seasonal changes in the associated plankton communities. This study provides first data on the FA composition of M. leidyi as compared to FA concentrations of two indigenous ctenophores. Total FA concentration in M. leidyi was three to four times lower compared to Pleurobrachia pileus and Beroe sp., categorising it as a lipid-poor organism. Trophic interactions between M. leidyi and two co-occurring ctenophores (P. pileus and Beroe sp.) showed considerable resource differentiation, which could be the result of competition or different diets. A mixture of zooplankton was identified as potential food sources for M. leidyi. FA markers supported the carnivorous diet of Beroe sp., but its SI composition did not confirm the predatory relation with M. leidyi

    Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    Get PDF
    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef ‘mini-mounds’ from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral reefs

    A comparison of the degree of implementation of marine biodiversity indicators by European countries in relation to the Marine Strategy Framework Directive (MSFD)

    Get PDF
    The degree of development and operability of the indicators for the Marine Strategy Framework Directive (MSFD) using Descriptor 1 (D1) Biological Diversity was assessed. To this end, an overview of the relevance and degree of operability of the underlying parameters across 20 European countries was compiled by analysing national directives, legislation, regulations, and publicly available reports. Marked differences were found between countries in the degree of ecological relevance as well as in the degree of implementation and operability of the parameters chosen to indicate biological diversity. The best scoring EU countries were France, Germany, Greece and Spain, while the worst scoring countries were Italy and Slovenia. No country achieved maximum scores for the implementation of MSFD D1. The non-EU countries Norway and Turkey score as highly as the top-scoring EU countries. On the positive side, the chosen parameters for D1 indicators were generally identified as being an ecologically relevant reflection of Biological Diversity. On the negative side however, less than half of the chosen parameters are currently operational. It appears that at a pan-European level, no consistent and harmonized approach currently exists for the description and assessment of marine biological diversity. The implementation of the MSFD Descriptor 1 for Europe as a whole can therefore at best be marked as moderately successful

    Trophic Ecology and Habitat Provision in Cold-Water Coral Ecosystems

    No full text
    Cold-water coral ecosystems differ from each other greatly in structure, faunal makeup, and ecological function. Attributes such as substrate type, 3-D complexity, biological community, and nutrient supply also change over small temporal and spatial scales. In this chapter, we present an overview of food gathering strategies employed by a range of cold-water corals. Furthermore, the importance of corals as habitat providers for associated fauna and thus biodiversity is discussed. The coral habitats support ecosystems at various spatial scales ranging from local exposed skeleton patches on gorgonian branches to the various zones on a reef. Comparison is made between many types of animal forests made up by cold-water corals, including several types of coral gardens and coastal and offshore reefs from a wide range of environmental settings. The trophic ecology of reef types is compared, and the variation in feeding behavior across particular reefs is also discussed
    corecore