144 research outputs found

    Luminance and timing control during visual presentation of natural scenes

    Get PDF
    In the study of visual cognition, accurate control of stimulus presentation is of primary importance yet is complicated by hardware malfunctioning, software variability, and visual materials used. Here, we describe VISTO 2.0, a low-cost and open-source device which is capable to measure the timing and temporal luminance profile of visual stimuli. This device represents a major improvement over VISTO (De Cesarei, Marzocchi, & Loftus, 2021), as it is only sensitive to a light spectrum in the visible range, is easier to assemble, and has a modular design that can be extended to other sensory modalities

    ElectroMagnetoEncephalography Software: Overview and Integration with Other EEG/MEG Toolboxes

    Get PDF
    EMEGS (electromagnetic encephalography software) is a MATLAB toolbox designed to provide novice as well as expert users in the field of neuroscience with a variety of functions to perform analysis of EEG and MEG data. The software consists of a set of graphical interfaces devoted to preprocessing, analysis, and visualization of electromagnetic data. Moreover, it can be extended using a plug-in interface. Here, an overview of the capabilities of the toolbox is provided, together with a simple tutorial for both a standard ERP analysis and a time-frequency analysis. Latest features and future directions of the software development are presented in the final section

    VISTO: An open-source device to measure exposure time in psychological experiments

    Get PDF
    The study of higher cognitive processes often relies on the manipulation of bottom-up stimulus characteristics such as exposure time. While several software exist that can schedule the onset and offset time of a visual stimulus, the actual exposure time depends on several factors that are not easy to control, resulting in undesired variability within and across studies. Here we present VISTO, a simple device built on the Arduino platform that allows one to measure the exact onset and offset of a visual stimulus, and to test its synchronization with a trigger signal. The device is used to measure the profile of luminance waveforms in arbitrary analog/digital (AD) units, and the implications of these luminance profiles are discussed based on a model of information accumulation from visual exposure. Moreover, VISTO can be calibrated to match the brightness of each experimental monitor. VISTO allows for control of stimulus timing presentation, both in classical laboratory settings and in more complex settings as technology allows to use new display devices or acquisition equipment. In sum, VISTO allows one to: • measure the profile of luminance curves. • determine the exposure time of a visual stimulus. • measure the synchronization between a trigger signal and a visual stimulus

    Modulation of early ERPs by accurate categorization of objects in scenes

    Get PDF
    The categorization of objects within natural scenes is carried out in a sequence of stages, which may build on the detection of perceptual regularities in the visual appearance of objects or may represent a more semantic level of categorization. Here, we examined the neural correlates of correct categorization of objects in scenes, using natural scenes which were equalized in color and spectral amplitude, and controlled in terms of spatial coherence. Event-related potentials (ERPs) were used to track the early stages of visual processing. Participants viewed degraded (phase-scrambled) versions of natural scenes and then categorized them as depicting animals or people. At an intermediate scrambling level, a negative-going occipitotemporal ERP modulation by categorization accuracy was observed, beginning approximately 150 ms after stimulus onset; at more degraded levels, no ERP modulation was observed. These results suggest that this early negative-going ERP modulation reflects processing of perceptual evidence which is predictive of later correct categorization, even when low-level differences in color, spectral amplitude, and spatial coherence are balanced or controlled

    Novelty and learning in cognitive control: evidence from the Simon task

    Get PDF
    While information that is associated with inappropriate responses can interfere with an ongoing task and be detrimental to performance, cognitive control mechanisms and specific contextual conditions can alleviate interference from unwanted information. In the spatial correspondence (Simon) task, interference has been consistently shown to be reduced by spatial non-correspondence in the previous trial (i.e., correspondence sequence effect, CSE); however the mechanisms supporting this sequential effect are not well understood. Here we investigated the role of novelty and trial-to-trial changes in stimulus and response features in a Simon task, observing similar modulation of CSE for novel and non-novel stimulus changes. However, changing the response modality from trial to trial dampened CSE, and this dampening was more pronounced when the probability of switch trials was higher, suggesting a role for long-term learning. The results are consistent with recent accounts, which indicate that spatial interference can be prevented by cognitive control mechanisms triggered by learned bindings

    Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes?

    Get PDF
    The investigation of visual categorization has recently been aided by the introduction of deep convolutional neural networks (CNNs), which achieve unprecedented accuracy in picture classification after extensive training. Even if the architecture of CNNs is inspired by the organization of the visual brain, the similarity between CNN and human visual processing remains unclear. Here, we investigated this issue by engaging humans and CNNs in a two-class visual categorization task. To this end, pictures containing animals or vehicles were modified to contain only low/high spatial frequency (HSF) information, or were scrambled in the phase of the spatial frequency spectrum. For all types of degradation, accuracy increased as degradation was reduced for both humans and CNNs; however, the thresholds for accurate categorization varied between humans and CNNs. More remarkable differences were observed for HSF information compared to the other two types of degradation, both in terms of overall accuracy and image-level agreement between humans and CNNs. The difficulty with which the CNNs were shown to categorize high-passed natural scenes was reduced by picture whitening, a procedure which is inspired by how visual systems process natural images. The results are discussed concerning the adaptation to regularities in the visual environment (scene statistics); if the visual characteristics of the environment are not learned by CNNs, their visual categorization may depend only on a subset of the visual information on which humans rely, for example, on low spatial frequency information

    Visual-cortical enhancement by acoustic distractors: The effects of endogenous spatial attention and visual working memory load

    Get PDF
    Past work has shown that when a peripheral sound captures our attention, it activates the contralateral visual cortex as revealed by an event-related potential component labelled the auditory-evoked contralateral occipital positivity (ACOP). This cross-modal activation of the visual cortex has been observed even when the sounds were not relevant to the ongoing task (visual or auditory), suggesting that peripheral sounds automatically activate the visual cortex. However, it is unclear whether top-down factors such as visual working memory (VWM) load and endogenous attention, which modulate the impact of task-irrelevant information, may modulate this spatially-specific component. Here, we asked participants to perform a lateralized VWM task (change detection), whose performance is supported by both endogenous spatial attention and VWM storage. A peripheral sound that was unrelated to the ongoing task was delivered during the retention interval. The amplitude of sound-elicited ACOP was analyzed as a function of the spatial correspondence with the cued hemifield, and of the memory array set-size. The typical ACOP modulation was observed over parieto-occipital sites in the 280–500 ms time window after sound onset. Its amplitude was not affected by VWM load but was modulated when the location of the sound did not correspond to the hemifield (right or left) that was cued for the change detection task. Our results suggest that sound-elicited activation of visual cortices, as reflected in the ACOP modulation, is unaffected by visual working memory load. However, endogenous spatial attention affects the ACOP, challenging the hypothesis that it reflects an automatic process

    Effects of Picture Size Reduction and Blurring on Emotional Engagement

    Get PDF
    The activity of basic motivational systems is reflected in emotional responses to arousing stimuli, such as natural pictures. The manipulation of picture properties such as size or detail allows for investigation into the extent to which separate emotional reactions are similarly modulated by perceptual changes, or, rather, may subserve different functions. Pursuing this line of research, the present study examined the effects of two types of perceptual degradation, namely picture size reduction and blurring, on emotional responses. Both manipulations reduced picture relevance and dampened affective modulation of skin conductance, possibly because of a reduced action preparation in response to degraded or remote pictures. However, the affective modulation of the startle reflex did not vary with picture degradation, suggesting that the identification of these degraded affective cues activated the neural circuits mediating appetitive or defensive motivation
    corecore