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The categorization of objects within natural scenes is
carried out in a sequence of stages, which may build on
the detection of perceptual regularities in the visual
appearance of objects or may represent a more semantic
level of categorization. Here, we examined the neural
correlates of correct categorization of objects in scenes,
using natural scenes which were equalized in color and
spectral amplitude, and controlled in terms of spatial
coherence. Event-related potentials (ERPs) were used to
track the early stages of visual processing. Participants
viewed degraded (phase-scrambled) versions of natural
scenes and then categorized them as depicting animals
or people. At an intermediate scrambling level, a
negative-going occipitotemporal ERP modulation by
categorization accuracy was observed, beginning
approximately 150 ms after stimulus onset; at more
degraded levels, no ERP modulation was observed. These
results suggest that this early negative-going ERP
modulation reflects processing of perceptual evidence
which is predictive of later correct categorization, even
when low-level differences in color, spectral amplitude,
and spatial coherence are balanced or controlled.

Introduction

Despite the visual complexity of the world, the
human visual system can usually analyze visual
information and convert it into meaningful represen-
tations without feelings of overt effort. This remarkable
efficiency has attracted a vast amount of research on
how the visual system processes visual information.

While classic studies focused on the analysis of simple
stimuli such as sinusoidal gratings, more recent studies
have focused on the processes which subtend the
analysis of complex natural scenes (Felsen & Dan,
2005; Kayser, Körding, & König, 2004). Since the
1970s, several studies have successfully investigated the
minimum exposure time for identifying stimulus
properties such as identity, categorical belonging, or
features such as openness or depth (Busey & Loftus,
1994; Greene & Oliva, 2009; Intraub, 1981; Loftus,
1972; Potter, 1975). More recently, electrophysiological
measures such as event-related potentials (ERPs) have
complemented these behavioral studies, providing
insight into the minimum time at which a differential
electrocortical activity for categorized stimuli is ob-
served, prior to or in absence of a behavioral response
(Luck, 2005).

Several recent studies investigated the latency for
detecting a target such as an animal in a briefly
presented (24 ms) scene, and it was found that as soon
as 150 ms after stimulus onset, a differential activity for
targets compared to nontargets could be observed over
occipital areas (Thorpe, Fize, & Marlot, 1996).
Subsequent research indicated that this early differen-
tial activity was localized in the inferotemporal cortex
(Codispoti, Ferrari, Junghöfer, & Schupp, 2006b; Fize
et al., 2000) and that response requirements (e.g., go/no
go vs. multiple choices) and target category (e.g.,
animals vs. means of transport) did not account for the
observed effects (Antal, Keri, Kovacs, Janka, &
Benedek, 2000; Codispoti, Ferrari, De Cesarei, &
Cardinale, 2006a; De Cesarei, Codispoti, Schupp, &
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Stegagno, 2006). Further insight into the nature of this
differential ERP activity comes from a previous study
(VanRullen & Thorpe, 2001) which alternated the
target/distractor status of the same images in different
blocks and compared ERPs depending on the status of
the pictures. When a category (e.g., animals) was
designated as target, it elicited a differential ERP
activity starting at 150 ms after stimulus onset
compared to the same category when it was designated
as distractor. The observation of an ERP modulation
associated with target detection at such low latencies
seems to complement the behavioral observation that
briefly presented complex scenes can be quickly
characterized in terms of basic features (Evans &
Treisman, 2005; Greene & Oliva, 2010; Thorpe,
Gegenfurtner, Fabre-Thorpe, & Bülthoff, 2001).

Which information allows for this fast image
categorization? It has been suggested that the visual
system continuously computes the statistical properties
of the visual input, for instance concerning the
distribution of amplitudes in the frequency spectrum
(Oliva & Torralba, 2001, 2006; Simoncelli & Olshausen,
2001; Torralba & Oliva, 2003). These statistics provide
information about the features that are regularly
associated with a category, such as sharp contours for
artificial compared to natural scenes (Torralba & Oliva,
2003), or about the composition of visual scenes (e.g.,
in terms of the fragmentation of picture layout).
Eventually, the calculation of these statistics aids basic-
level categorization and favors scene understanding
(Crouzet & Serre, 2011; Ghebreab, Scholte, Lamme, &
Smeulders, 2009; Oliva & Schyns, 2000; Oliva &
Torralba, 2001, 2006; Ullman, Vidal-Naquet, & Sali,
2002). Recently, it has been shown that the gamma
parameter of the Weibull fit to image contrast reflects
the fragmentation of the layout of the scene and may
serve as a basis for natural-image identification
(Geusebroek & Smeulders, 2005; Ghebreab et al., 2009;
Yanulevskaya & Geusebroek, 2009). In particular, the
gamma parameter of the Weibull fit to image contrast
has been dubbed the shape parameter (Geusebroek &
Smeulders, 2005) or spatial coherence (Groen, Ghe-
breab, Lamme, & Scholte, 2012), as it describes the
visual clutter that is present in a scene.

Scene statistics have been shown to be biologically
relevant, as they approximate computations which are
carried out during visual processing and modulate
electrocortical responses (Scholte, Ghebreab, Waldorp,
Smeulders, & Lamme, 2009). More specifically, several
studies have indicated that the spatial coherence of a
scene modulates electroencephalogram (EEG) activity
(Groen, et al., 2012; Groen, Ghebreab, Prins, Lamme,
& Scholte, 2013; Scholte et al., 2009). These studies
indicate that most of the variance in the amplitude of
single-trial event-related potentials in an early time
interval (around 113 ms) is explained by spatial

coherence (Groen et al., 2013; Scholte et al., 2009) or by
the combined effects of spatial coherence and contrast
energy (Ghebreab et al., 2009; Groen et al., 2012).
Moreover, it has been shown that the presence of
diagnostic colors (e.g., colors that are typically
associated with a class of scenes, such as blue for the
sea) can modulate early ERPs related to scene
identification (Goffaux et al., 2005). Similarly, a vast
amount of data (e.g., De Cesarei, Mastria, & Codispoti,
2013; Hansen, Jacques, Johnson, & Ellemberg, 2011;
Joubert, Rousselet, Fabre-Thorpe, & Fize, 2009;
Rousselet & Pernet, 2011; VanRullen, 2011) indicates
that differences in image statistics may modulate early
ERPs during scene or object categorization.

The research problem

The present research aimed to extend the results of
previous studies by investigating whether early ERPs
are modulated by categorization accuracy. If the early
ERP modulation that has been previously observed
(Thorpe et al., 1996) reflects the attainment of correct
categorization of objects in scenes, then a comparable
modulation should be observed not only when com-
paring targets to distractors but also when comparing
correctly categorized to misidentified trials. Due to the
remarkably high accuracy that is achieved using intact
images, this type of analysis was not possible in several
previous studies (Antal et al., 2000; Codispoti et al.,
2006b; De Cesarei et al., 2006; Thorpe et al., 1996;
VanRullen & Thorpe, 2001). An interesting preliminary
result in this direction comes from a previous study
investigating a go/no-go categorization task (Rousselet,
Thorpe, & Fabre-Thorpe, 2004), in which categoriza-
tion accuracy was reduced by presenting one, two, or
four scenes at the same time. In that study, similar early
ERP modulation was observed when targets were
correctly identified and when a distractor was incor-
rectly identified as a target. The present study was
conceived in order to extend these results to a forced-
choice paradigm, in which perceptual cues related to
color and to the spectral amplitude were controlled.

Here the experimental manipulations aimed to
reduce perceptual differences between images and to
modulate scene identifiability. To this end, participants
looked at degraded pictures of natural scenes and were
asked to perform a forced-choice categorization be-
tween two target categories (animals and people).
Scenes were manipulated in three aspects: They were
equated in terms of color and Fourier spectrum
amplitude, and their spectral phase was randomized.
Perceptual differences in color and global spectral
amplitude were eliminated, so that scene processing
was examined in the absence of these perceptual cues.
Additionally, categorization accuracy was kept low and
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modulated by presenting scenes in which the phase of
the frequency spectrum was randomized to varying
extents. Phase scrambling is a procedure which is
frequently used to decrease the identifiability of a
stimulus without altering its spectral amplitude prop-
erties (Arsenault, Yoonessi, & Baker, 2011; Bieniek,
Pernet, & Rousselet, 2012; Joubert et al., 2009;
VanRullen, 2011). The manipulation of the phase of
the frequency spectrum changes the locations in the
picture where contrast changes happen; as a conse-
quence, phase scrambling breaks the local structure of a
scene. In previous studies, the distortion or randomi-
zation of the phase spectrum dampened categorization
accuracy for both scenes (Gaspar & Rousselet, 2009;
Joubert et al., 2009) and faces (Bieniek et al., 2012;
Rousselet, Pernet, Bennett, & Sekuler, 2008). However,
other studies have also emphasized an effect of spectral
amplitude or an interaction of amplitude and phase in
the modulation of behavioral and electrocortical
correlates of categorization (Gaspar & Rousselet, 2009;
Loschky & Larson, 2008; Wichmann, Braun, &
Gegenfurtner, 2006).

Depending on the role of categorization and
perceptual cues in the modulation of early ERPs, one
of two scenarios may be expected. In the first scenario,
modulation of early ERPs reflects the semantic
categorization of objects in scenes. If this prediction
holds true, then ERP modulation should be observed
for successfully categorized compared to misidentified
trials, despite the fact that perceptual differences in
color and spectral amplitude are controlled. Alterna-
tively, it is possible that the previously observed early
ERP difference did not reflect semantic categorization
per se but was elicited by a perceptual cue that is
eliminated in the controlled conditions adopted here.
This second scenario therefore predicts that no ERP
modulation will be observed, as important perceptual
cues (color and spectral amplitude) are controlled.

An additional problem that occurs when visual
scenes are degraded is that some scenes are more
affected by degradation than others, in terms of
identifiability. Natural scenes differ in several aspects
that are captured by image statistics; here, we equated
two of these aspects, namely the color and the
amplitude of the Fourier spectrum. However, this does
not exclude the possibility that local differences still
exist in equalized pictures, and it is possible that scenes
with a more coherent local structure are more resistant
to phase scrambling. To understand in which pictures
objects could be correctly and incorrectly categorized,
we measured the spatial coherence of all intact stimuli
and analyzed results accordingly.

Finally, we manipulated the context in which scenes
were analyzed. In the first condition, participants
viewed scenes in a randomized order, and no prior
information about the upcoming picture was present.

Alternatively, pictures could be seen in a sequence in
which the most degraded version was presented first
and picture phases were gradually unscrambled. It may
be expected that prior coarse information about picture
content may modulate successive processing. In the
neural model of visual perception which was put
forward by Bar (2004), coarse information about
picture content is quickly analyzed and projected to the
prefrontal cortex, where hypotheses regarding the
content of visual input are generated; these perceptual
hypotheses are then back-projected to visual areas and
constrain further processing of fine-grained informa-
tion. While this model describes how coarse and fine
information interact during the processing of a single
scene, it may be asked whether a similar facilitation can
be observed on a trial-by-trial basis, when stimuli are
progressively revealed. It may be expected that ERP
modulation will be facilitated (earlier latency or more
pronounced amplitude) in the sequential compared to
the randomized condition.

Methods

Participants

A total of 20 participants (14 women) took part in
the study for course credit. Age ranged from 19 to 29
years (M¼ 21.6, SD¼ 3.1). All participants had normal
or corrected-to-normal vision, and none of them
reported current or past neurological or psychopatho-
logical problems. The participants had no previous
experience with the materials used in this experiment.
The experimental protocol conformed to the Declara-
tion of Helsinki and was approved by the Ethical
Committee of the Department of Psychology at the
University of Bologna.

Stimuli and equipment

A total of 240 pictures were selected for the present
study from public-domain images available on the
Internet and from the International Affective Picture
System (IAPS) database (see Figure 1 for examples of
the pictures used). Half of the pictures represented
animals and half depicted people. The present data
were part of a larger project on emotional response,
and pictures of people could be positively, neutrally, or
negatively valenced. Pictures subtended a visual angle
of 288 (horizontal) by 218 (vertical). The resolution of
the original pictures was 800 3 600 or higher, and all
stimuli were cropped to a 4:3 ratio and scaled to 800 3
600 pixel size.
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For each original picture, spatial coherence (SC) was
calculated using the algorithm suggested by Yanulev-
skaya and Geusebroek (2009). This procedure estimates
the beta (contrast energy) and gamma (spatial coher-
ence) parameters of the Weibull fit to the distribution
of contrast. The results of this analysis are represented
in Figure 1.

The pictures were modified in the following way: All
pictures were converted to grayscale and equated to the
same frequency spectra, brightness, and contrast using
a MATLAB-based toolbox (Willenbockel et al., 2010).
Then four phase-scrambled versions of each picture
were created using a weighted mean phase algorithm
(Dakin, Hess, Ledgeway, & Achtman, 2002). This
procedure consists of three steps. First, the power and
phase of the image spectrum are calculated. Then the
phase spectrum of the original image is combined with
a random phase, according to a mixing factor ranging
from 100% (only the random-phase information is
used) to 0% (only the original-phase information is
used). In the third and final step, the resulting phase
spectrum is recombined with the original spectral
power, and a picture is obtained which retains the
spectral power of the original image but with different
phase information. Based on pilot data from three
participants who did not take part in the final
experiment, it was decided that phase scrambling
parameters of 80%, 65%, 55%, and 0% would be used.

Notably, with these parameters the fourth level of
phase scrambling is identical to the original picture and
will henceforth be referred to as intact pictures.

Procedure

The block and trial procedure is presented in Figure
2. The experiment was divided into two blocks, the
order of which was counterbalanced across partici-
pants. In one block (mixed block), the order of pictures
was pseudorandomized. In neighboring trials of the
mixed block, a different picture would always be
presented. In the other block (sequential block), all four
versions of the same picture would be presented in a
row, beginning with the most degraded one and
progressively revealing picture content. Pictures which
were presented in one block were not presented in the
other one, and all pictures were equally often assigned
to either block across all participants. In each block, all
four versions of the pictures were presented. The two
blocks were otherwise identical.

Each trial began with the presentation of a fixation
cross, which remained onscreen for 500 ms (Figure 2).
Then a picture was presented that remained onscreen
for 1 s. After picture offset a question mark appeared,
signaling that a response was required. Participants
were asked to decide whether the picture they had just
seen represented a person or an animal, and indicate
their choice by pressing one of two keys (Z or M) on
the computer keyboard. The 1-s exposure time and the
assessment of responses following picture offset were
chosen so that ERPs related to the offset of the visual
stimulus or related to the preparation of motor
response would not contaminate ERPs in the time
interval of interest. Participants were required to
respond to all trials, and the association between the
response key and the category was counterbalanced
across participants. After an intertrial interval of 2 s,
the next trial began.

Prior to the first block, eight practice trials in the
mixed or in the sequential condition were presented, in
order to let participants familiarize themselves with the
categorization task. Halfway though each block, and
between the two blocks, participants were allowed to
have a short break. Data from the practice trials were
not analyzed.

EEG recording and processing

EEG was recorded at a sampling rate of 256 Hz from
256 active sites using an ActiveTwo Biosemi system. An
additional sensor was placed below the participant’s
left eye, to allow for detection of blinks and eye
movements. The EEG was referenced to an additional

Figure 1. Scatter plot of the contrast energy (y) and spatial

coherence (x) in the present picture set. Each original image is

positioned at its respective values of contrast energy and spatial

coherence. These parameters were calculated on the original,

unequalized versions of the pictures.
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reference electrode located near Cz during recording. A
hardware fifth-order low-pass filter with a�3-dB
attenuation factor at 50 Hz was applied online. Off-line
analysis was performed using Emegs (Peyk, De Cesarei,
& Junghöfer, 2011). EEG data were initially filtered
(0.1 Hz high-pass and 40 Hz low-pass), and eye
movements were corrected by means of an automated
regressive method (Schlögl et al., 2007). Trials and
sensors containing artifactual data were detected
through a statistical procedure specifically developed
for dense-array EEG (Junghöfer, Elbert, Tucker, &
Rockstroh, 2000). Trials containing a high number of
neighboring bad sensors were discarded; for the rest of
trials, sensors containing artifactual data were replaced
by interpolating the nearest good sensors. Finally, data
were re-referenced to the average of all sensors, and a
baseline correction based on the 100 ms prior to
stimulus onset was performed. For the image-based
analysis, data were averaged over participants, whereas
for the participant-based analysis, data were averaged
across pictures. The distribution of good trials per
condition was as follows: 80% phase scrambling,
correct M ¼ 107.2, SD ¼ 10.6, incorrect M ¼ 103.45,
SD¼ 12.9; 65% phase scrambling, correct M ¼ 129.2,
SD¼ 13.9, incorrect M¼ 87.65, SD¼ 12.21; 55% phase
scrambling, correct M ¼ 179.95, SD¼ 15.98, incorrect
M ¼ 38.05, SD¼ 14.91; 0% phase scrambling, correct
M¼ 208.95, SD¼ 9.26, incorrect M¼ 1.83, SD¼ 2.29.

In the reported analysis, ERPs in the three degraded
conditions are scored and analyzed separately from
those in the intact condition. This was decided based on

preliminary analyses, which indicated differences in
ERP topography, number of accurate trials per
condition, and sensitivity to picture content. Concern-
ing ERP topography, a preliminary inspection of the
ERP waveforms in the four degradation conditions
indicated that ERPs in the intact condition differed
from the other conditions in latency and amplitude and
due to the presence of a pronounced N1 which was
absent in the other conditions. Additionally, since for
the present study it was critical to have enough trials in
which an accurate categorization is not attained, the
intact condition could not be included in the Accuracy
3 Degradation statistical design, as not enough
incorrect trials were retained in the intact condition.

To collapse multidimensional ERP data for statisti-
cal analysis, the region and time interval of interest
were selected based on previous studies.1 Sensor
selection was based on two previous studies that
examined rapid categorization using averaged refer-
enced data and reported the labels of the sensors used
for analysis (Codispoti et al., 2006b; Rousselet et al.,
2004). Based on those labels, we selected the sensors
closest to T5, P5, PO5, PO7, O1, POz, Oz, T6, P6, PO6,
PO8, and O2. All sensors in this scalp area were
included in the analysis, for a total of 21 electrodes.
From this sensor group, ERPs in the degraded
conditions were scored and analyzed in the time
interval 150–300 ms for consistency with previous
studies (Fabre-Thorpe, Delorme, Marlot, & Thorpe,
2001; Rousselet et al., 2004; Thorpe et al., 1996;
VanRullen & Thorpe, 2001). In the intact condition,

Figure 2. Procedure and accuracy. The top left panel represents the sequence of picture presentation in the mixed and sequential

conditions. The bottom left panel represents the sequence of events for each picture in the sequence. The panel on the right

represents categorization accuracy, for each of the three degradation conditions and for intact pictures. Error bars represent the

standard error of the mean.
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ERPs were scored as the average in the time interval
200–350 ms in the same scalp area. The time interval
200–350 ms was chosen based on visual inspection of
ERP data; more specifically, in the intact condition,
ERPs included a pronounced N1 which was absent in
the other conditions, and the overall ERP waveform
appeared delayed in the intact compared to the
scrambled conditions. The sensors used in the analysis
are reported in Figure 3, and the time intervals of
interest are highlighted in Figures 4 and 5.

Data analysis

General strategy

The analysis was aimed primarily at investigating the
effects of phase scrambling (80%, 65%, 55%, 0%) and
procedure (mixed vs. sequential) on categorization andon
electrocortical correlates of picture perception. Addi-

tionally, we asked whether differences between images in
terms of spatial coherence might account for any
behavioral or ERP effects. To this end, SCwas calculated
for the original images, and images were ranked in two
groups according to the SC value (high vs. low). A high
value indicates a locally fragmented scene, while a low
value indicates a more homogeneous composition.

Behavioral and ERP data were analyzed through
repeated-measures ANOVAs with factors of procedure,
phase scrambling, and spatial coherence rank. In the
analysis of ERP data of the scrambled scenes, an
additional factor of accuracy (correct vs. incorrect) was
included in the ANOVA design. For intact pictures, a
one-way repeated-measures ANOVA was carried out
with procedure and SC rank as factors.

Figure 3. ERP modulation by categorization accuracy in the time

interval 150–300 ms, in the 55% phase-scrambling condition.

On the left, an overview of the 257-sensor net is presented (top

view, looking upwards), with sensors used in the analysis

highlighted in gray.

Figure 4. The effects of phase scrambling on early ERPs from the occipitotemporal sensor group analyzed, as modulated by phase

scrambling and accuracy.

Figure 5. The effects of procedure on ERPs in the intact

condition, in the examined occipitotemporal sensor group from

200 to 350 ms. The topography on the right reports a back view

of the differential between sequential and mixed ERPs.
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To deal with sphericity violations that increase the
probability of type I error, a Huynh–Feldt correction
was applied to the degrees of freedom. In all cases in
which a significant main effect of a factor with more
than two levels was observed, we proceeded with post
hoc tests using a paired-sample t test. For all ANOVA
effects, we calculated, and report, the partial eta
squared, which reflects the proportion of variance that
is accounted for by experimental manipulations.

Behavioral responses

Behavioral data were analyzed for accuracy and
response times. Accuracy was averaged across partic-
ipant, SC rank (high vs. low), phase scrambling (80%,
65%, 55%, 0%), and procedure (mixed vs. sequential).
Accuracy in all phase-scrambling conditions was
compared to the 0.50 chance level through a t test with
a¼ 0.05. Response times to trials which were correctly
categorized were averaged across the same factors,
using the mean as the index of central tendency and
excluding trials that deviated more than 62 standard
deviations from the mean of each participant.

ERPs

ERPs were first analyzed through an ANOVA with
participants as a random factor and accuracy, phase
scrambling, and SC rank as within-participant factors.
In the remainder of this article, we will refer to this
analysis as ‘‘participant-based.’’ Additionally, an im-
age-based analysis was carried out with the objective of
investigating how categorization accuracy interacts
with the effects of phase scrambling and procedure on
early ERPs, while measuring and comparing differ-
ences between images in SC. To this end, an additional
ANOVA was conducted using images as a random
factor, i.e., by comparing ERPs between correct and
incorrect categorizations of the exact same images. This
analysis will be dubbed ‘‘image-based’’ in the following
text. This allows the analysis to account for physical
differences between stimuli. This analysis was con-
ducted using accuracy (correct vs. incorrect) and phase
scrambling (80%, 65%, 55%) as within-image factors
and procedure (mixed vs. sequential) and SC rank (high
vs. low) as between-images factors.

Results

Categorization performance: Accuracy and
response times

Accuracy results are reported in Figure 2. Accuracy
was initially at chance (M ¼ 0.51, SD ¼ 0.06). As

pictures were revealed, accuracy increased and correct
categorization was achieved for intact pictures (M ¼
1.00, SD ¼ 0.01). The 80% phase scrambling did not
differ significantly from chance, t(19)¼ 0.861, p¼ 0.40,
while all other conditions significantly differed from
chance, with t tests yielding significant results: 65%,
t(19)¼ 7.423, p , 0.001; 55%, t(19)¼21.269, p , 0.001;
0%, t(19) ¼ 244.61, p , 0.001.

A significant effect of phase scrambling was ob-
served, F(3, 57)¼ 734.91, p , 0.001, g2p ¼ 0.98,
indicating that categorization accuracy increased as
scenes were revealed. Post hoc tests between neigh-
boring phase-scrambling levels indicated significant
differences between all levels: 80% vs. 65%, t(19) ¼
�8.55, p , 0.001; 65% vs. 55%, t(19) ¼�33.341, p ,
0.001; 55% vs. 0%, t(19) ¼�11.604, p , 0.001.

A significant interaction of procedure and phase
scrambling was observed, F(1, 19) ¼ 2.843, p¼ 0.046,
g2p¼ 0.13. Following this interaction, the effects of
procedure were examined at each phase-scrambling
level. Significant effects of procedure were observed for
65% and 55% phase scrambling—F(1, 19)¼ 5.79, p¼
0.026, g2p ¼ 0.23, and F(1, 19) ¼ 4.69, p ¼ 0.043, g2p ¼
0.20, respectively—indicating better performance in the
mixed compared to the sequential condition. No effects
of procedure were observed in the 80% and 0% phase-
scrambling conditions: 80%, F(1, 19)¼ 2.171, p¼ 0.157,
g2p¼ .103; 0%, F(1, 19)¼ 1.021, p¼ 0.325, g2p¼ 0.051.
Overall, a significant effect of procedure was observed,
F(1, 19) ¼ 5.43, p ¼ 0.031, g2p¼ 0.22, indicating better
accuracy in the mixed compared to the sequential
procedure.

Finally, a significant interaction of SC rank and
phase scrambling was observed, F(3, 57) ¼ 14.40, p ,
0.001, g2p ¼ 0.43. Examining the effects of SC rank at
each phase-scrambling level, significant effects were
observed for 65% and 55% phase scrambling—F(1, 19)
¼ 7.61, p¼ 0.012, g2p¼ 0.29, and F(1, 19)¼ 56.82, p ,
0.001, g2p ¼ 0.75, respectively—with higher accuracy
for images which were low in spatial coherence
compared to high. SC rank failed to modulate accuracy
in the 80% and 0% phase-scrambling conditions: 80%,
F(1, 19)¼ 1.370, p¼ 0.256, g2p¼ 0.067; 0%, F(1, 19)¼
0.003, p ¼ 0.959, g2p , 0.001. An overall significant
main effect of SC rank was observed, F(1, 19)¼10.33, p
¼ 0.005, g2p¼ 0.35, indicating better categorization for
stimuli which were low in spatial coherence as
compared to high.

Response times were analyzed with the same
ANOVA design as accuracy data, and are reported in
Table 1. A highly significant effect of phase scrambling
was observed, F(3, 57)¼ 18.45, p , 0.001, g2p¼ 0.49,
indicating faster responses as phase scrambling was
reduced. Post hoc tests indicated slower responses in
the 80% phase-scrambling condition compared to all
other conditions, ts(19) . 4.488, ps , 0.001, and in the
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65% phase-scrambling condition compared to the 55%
and 0% conditions, t(19)¼ 2.325, p¼ 0.031, and t(19)¼
2.330, p ¼ 0.031, respectively. No differences were
observed between the 55% and 0% conditions, p¼ 0.84.
Additionally, a significant main effect of SC rank was
observed, F(1, 19)¼ 16.73, p ¼ 0.001, g2p¼ 0.47,
indicating faster responses to scenes which were low
compared to high in spatial coherence.

In summary, scrambling the phase of the spatial
frequency spectrum dampened performance in the
categorization of objects in scenes; this effect was
reflected both by lower accuracy and by slower
responses as phase scrambling increased. Moreover, in
the intermediate scrambling conditions (65% and 55%),
more accurate performance was observed for trials in
the mixed compared to the sequential condition, and
for scenes which were low compared to high in spatial
coherence.

ERPs: Degraded conditions

In the participant-based analysis, a main effect of
phase scrambling was observed, F(2, 38) ¼ 4.948, p¼
0.012, g2p¼0.207, which indicated less positive ERPs in
the 55% compared to the 65% and the 80% conditions:
80% vs. 55%, t(19) ¼ 4.227, p , 0.001; 65% vs. 55%,
t(19) ¼ 3.427, p ¼ 0.003. This effect was modulated by
an interaction with categorization accuracy, F(2, 38) ¼
5.103, p¼ 0.011, g2p¼ 0.212. For correct trials, a main
effect of phase scrambling indicated less positive ERPs
as phase scrambling was reduced, F(2, 38)¼ 13.81, p ,
0.001, g2p ¼ 0.421, with significant differences between
the 55% and all other degraded conditions: 80% vs.
55%, t(19) ¼ 4.557, p , 0.001; 65% vs. 55%, t(19) ¼
3.95, p ¼ 0.001. For incorrectly categorized trials, no
effect of phase scrambling was observed, F(2, 38) ¼
0.252, p ¼ 0.778 g2p ¼ 0.013. Finally, after separate
analysis of each phase-scrambling level, a significant
effect of accuracy was observed only in the 55% phase-
scrambling condition, t(19) ¼ 3.326, p ¼ 0.004, not for
80% and 65% phase scrambling, t(19)¼�1.433, p ¼
0.168, and t(19) ¼�0.277, p ¼ 0.785, respectively.
Finally, a significant effect of SC rank was observed,

F(1, 19) ¼ 11.149, p ¼ 0.003, g2p¼ 0.37, indicating less
positive ERPs for pictures which were low compared to
high in spatial coherence.

The image-based analysis investigated the effects of
phase scrambling and categorization accuracy on early
ERP modulation, while controlling for the spatial
coherence of the original scenes. ERP waveforms in the
three degraded conditions are reported in Figure 4.
Different from the participant-based analysis, the main
effect of phase scrambling was not significant in the
image-based analysis, F(2, 348)¼ 0.688, p¼ 0.494, g2p¼
0.004. Similar to the participant-based analysis, a
significant interaction of phase scrambling and accu-
racy was observed, F(2, 348) ¼ 4.451, p ¼ 0.014, g2p¼
0.025. When participants correctly categorized pictures,
a significant main effect of phase scrambling was
observed, F(2, 476) ¼ 16.09, p , 0.001, g2p ¼ 0.063,
indicating less positive ERPs in the 55% compared to
the other degraded conditions: 80% vs. 55%, t(239) ¼
5.426, p , 0.001; 65% vs. 55%, t(239) ¼ 4.489, p ,
0.001. When participants could not categorize stimuli
correctly, no significant effect of phase scrambling was
observed, F(2, 476)¼ 1.444, p¼ 0.238, g2p¼ 0.008. On
analyzing the Accuracy3Phase Scrambling interaction
separately for each phase-scrambling level, significant
effects of accuracy were observed for only the 55%
phase-scrambling condition, t(175) ¼ 2.887, p¼ 0.004
(see Figure 3)—with less positive ERPs for correct
compared to incorrect categorizations—not for 80%
and 65% phase scrambling, t(239)¼0.31, p¼0.741, and
t(239) ¼ 0.542, p¼ 0.588, respectively.

Different from the participant-based analysis, in
which a significant effect of spatial coherence was
observed, the main effect of SC rank did not reach
standard significance in the image-based analysis,
F(1, 174) ¼ 3.698, p ¼ 0.056, g2p¼ 0.021, nor was any
interaction involving SC rank observed. Finally, the
image-based analysis differed from the participant-
based analysis in that a main effect of accuracy was
observed, F(1, 174) ¼ 5.27, p ¼ 0.02, g2p ¼ 0.03,
indicating a less positive ERP amplitude for correctly
categorized trials compared to incorrect trials.

In summary, both the participant-based and the
image-based analyses revealed a significant interaction

Phase scrambling

Procedure SC rank 80% 65% 55% 0% Total

Mixed Low 674.69 (235.65) 602.47 (164.01) 542.82 (155.51) 561.16 (141.08) 595.29 (174.0625)

High 697.10 (238.28) 635.04 (180.96) 588.62 (152.92) 586.04 (164.52) 626.70 (184.17)

Sequential Low 732.24 (194.64) 617.74 (185.08) 617.04 (191.82) 603.03 (177.54) 642.51 (187.27)

High 743.62 (205.80) 651.65 (213.10) 647.93 (213.71) 632.37 (192.63) 668.89 (206.31)

Total 711.91 (218.59) 626.73 (185.79) 599.10 (178.49) 595.65 (168.94) 633.35 (187.95)

Table 1. Response times (ms) in each of the conditions defined by procedure, phase scrambling, and spatial coherence (SC) rank.
Values in parentheses represent standard deviations from the mean.

Journal of Vision (2015) 15(8):14, 1–14 De Cesarei, Peverato, Mastria, & Codispoti 8

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934120/ on 07/06/2016



of phase scrambling and categorization accuracy, with
less positive ERPs for correct compared to incorrect
trials in the least degraded level (55% phase scram-
bling). In the image-based analysis only, the main effect
of accuracy reached significance. Finally, in the
participant-based analysis, significant effects of spatial
coherence and of phase scrambling were observed, but
these effects were not observed in the image-based
analysis, which used image as a random factor.

ERPs: Intact condition

Results in the intact condition are reported in Figure
5. In the intact condition, ERPs were scored and
analyzed in the time interval 200–350 ms. In the
participant-based analysis, a significant effect of
procedure was observed, F(1, 19)¼ 4.758, p¼ 0.042, g2p
¼ 0.20, indicating less pronounced positivity in the
sequential compared to the mixed condition. No
significant main effect or interaction involving SC rank
was observed. Similarly, in the imaged-based analysis a
significant procedure effect was observed, indicating
that the ERP amplitude was less pronounced in the
sequential compared to the mixed block, F(1, 238) ¼
16.473, p , 0.001, g2p¼ 0.065. No significant effect or
interaction involving SC rank was observed.

Discussion

The present study examined the categorization of
objects in natural scenes, aiming to functionally
characterize an early ERP signature which was
suggested to reflect the categorization of objects in
scenes. The results support a scenario in which the early
ERP differential reflects an activity that is related to
later semantic categorization but does not build on
low-level differences in color, spectral amplitude, or
spatial coherence.

A number of previous studies have observed a
reduction in ERP positivity over occipital sensors
beginning 150 ms from stimulus onset when objects and
scenes are selected or categorized (Codispoti et al.,
2006a; Doniger et al., 2000; Johnson & Olshausen,
2003; Schendan & Kutas, 2007; Sehatapour, Molholm,
Javitt, & Foxe, 2006). However, concerning the
categorization of objects in scenes, there has been no
previous assessment as to whether differences in
diagnostic color, spatial frequency amplitude, and SC
between categories are necessary to observe this early
ERP differentiation. Building on a previous study (De
Cesarei et al., 2013) which observed that the average
spectral power was linearly related to the absolute
amplitude of the P2, a positive ERP peak in the same

latency range as the early ERP differential, this study
examined the extent to which the early ERP differential
is associated with the correct categorization of objects
in scenes when spectral differences in amplitude are
ruled out.

The present results support the link between the
early differential ERP negativity and correct categori-
zation. In trials in which incorrect categorization was
reported following picture offset, no increase in ERP
amplitude was observed as pictures were revealed. A
different pattern was observed in trials in which
participants could, after picture offset, correctly cate-
gorize pictures as depicting people or animals. In these
trials, ERP positive amplitude decreased compared to
incorrect categorizations, until a significant difference
was observed between scenes that would later be
correctly or incorrectly categorized. This early ERP
modulation is comparable in latency, direction, and
topography to that observed in previous studies
(Codispoti et al., 2006b; Delorme, Rousselet, Macé, &
Fabre-Thorpe, 2004; Johnson & Olshausen, 2003).
Altogether, and consistent with previous results in a go/
no-go task (Rousselet et al., 2004; VanRullen &
Thorpe, 2001), these results suggest a link between this
early ERP difference and categorization per se.

The present ERP results indicate that, as early as 150
ms, processing of cues which are predictive of accurate
categorization is taking place. The possibility that
accurate categorization of objects in scenes may begin
early in time is supported by the results of a previous
study, which used instructed saccades toward targets as
an index of stimulus categorization (Kirchner &
Thorpe, 2006). In that study, two intact monochro-
matic pictures were briefly presented in the left and
right visual fields, and correct saccades toward the
target image were first observed 120–130 ms after
stimulus onset. As the preparation and execution of an
instructed saccade requires substantially less time
compared to manual responses (Schiller & Kendall,
2004), the authors concluded that at about 100 ms,
categorization of this kind of image could begin. Taken
together, electrophysiological and behavioral results
point to the high efficiency of the visual system in using
the available sensory information to modulate visual
processing (ERPs) or guide eye behavior (eye tracking),
ultimately supporting the categorization process be-
ginning as early as 150 ms after picture onset.

In the present study, dissociations were observed
between behavioral responses, which were executed
about 1.5 s after picture onset (about 1630 ms), and
early ERPs in the interval 150–300 ms after picture
onset. Specifically, early ERPs were independently
modulated by accuracy and spatial coherence, and no
interaction was observed between these two factors; on
the other hand, in behavioral performance, spatial
coherence and accuracy were associated, and accuracy

Journal of Vision (2015) 15(8):14, 1–14 De Cesarei, Peverato, Mastria, & Codispoti 9

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934120/ on 07/06/2016



was higher for pictures that were low in SC, compared
to high, in the 65% and 55% conditions. Additionally,
an ERP modulation by accuracy was observed in the
55% but not the 65% phase-scrambling condition,
despite behavioral accuracy being above chance in both
conditions. Finally, task context modulated behavioral
accuracy but not ERPs in the 65% and 55% conditions,
and vice versa (ERPs but not performance) in the intact
condition. One possibility is that visual information,
including that concerning task context and spatial
coherence, continues to be processed later than 300 ms
and contributes to a further increase in behavioral
accuracy compared to what can be achieved based on
early visual processing. Previous models of visual
processing suggest that, as visual analysis proceeds,
more complex processing is carried out, involving
recurrent feedback from other structures such as the
orbitofrontal cortex (Bar, 2004) and processing of
visual input at a finer scale (Hegdé, 2008); as a result of
this continued processing, a high accuracy observed in
a late time interval can build on more information than
that available shortly after picture onset. In the present
paradigm, continuing analysis following the early ERP
interval reported here may have been promoted by the
chosen paradigm, in which participants had to respond
after picture offset. Alternatively, it may be that the
processes which subtend correct behavioral categori-
zation are only partially reflected in the early occipital
ERP modulation, and are rather evident in single-trial
EEG or event-related oscillatory activity; in support of
this possibility, earlier studies using intact images have
indicated that correct categorization can be achieved at
very short latencies following picture onset, with both
manual and ocular responses (Kirchner & Thorpe,
2006; Thorpe et al., 1996).

Here, we examined whether differences in spatial
coherence between scenes modulate categorization and
electrocortical correlates of the processing of objects in
scenes. The behavioral categorization of objects in
scenes which, in the intact version, had a more coherent
composition (low SC) was less hindered by degradation
than that regarding scenes that were more locally
fragmented (high SC). More specifically, performance
varied in terms of both accuracy and response times.
These effects were observed despite participants’
responding after picture offset and not being required
to respond as quickly as possible. Even under these
unconstrained conditions, slower responses and higher
error rates seem to indicate that stimuli which were
high in SC required more time to be processed and
categorized, compared to those low in SC. Taken
together, these results suggest that the SC of intact
images may predict overall difficulty resulting from
phase scrambling.

Concerning the effects of SC on ERPs, a main effect
of SC was observed in the participant-based analysis in

the intact as well as the degraded conditions, with less
positive ERPs for stimuli which were low compared to
high in SC. The direction of this effect appears to be
consistent with the findings of previous studies (Groen
et al., 2013) and with the observation that scenes which
are low in SC are easier to categorize compared to
those which have high SC. However, it should be noted
that the effect of SC on ERP amplitude did not interact
with the effect of accuracy and phase scrambling.
Moreover, when physical differences between the
images were statistically controlled using image as a
random factor, no significant effects of SC were
observed. This pattern of results suggests that spatial
coherence modulates early ERPs independently of later
correct categorization. However, spatial coherence may
be analyzed at a later time interval or in a less time-
locked manner than is reflected by ERPs, and may
contribute to accurate categorization of objects in
scenes as reflected by behavioral accuracy.

It has been suggested that rapid categorization
reflects the detection of one of more diagnostic features
which define a target category (Evans, Horowitz, &
Wolfe, 2011; Evans & Treisman, 2005) rather than a
full semantic recognition of the scene. The under-
standing of visual scenes may be performed at very
different levels, including perceptual decision (e.g.,
upwards/downwards), categorization of global scene
content (e.g., indoor/outdoor), gist understanding,
categorization of objects in scenes, and many other
forms. Importantly, different perceptual cues, image
statistics, and even processing modes (e.g., coarse to
fine or vice versa) may support these different forms of
scene understanding (De Cesarei & Loftus, 2011;
Morrison & Schyns, 2001). For the extent to which the
present task required the detection of humans and
animals, it should suffice to detect a feature (e.g.,
glasses for humans or fangs for animals) which is
unique to either category. The present results suggest
that, as early as 150 ms, the diagnostic features which
contribute to rapid categorization are being processed.
Importantly, these features are distinct from those
which were equalized or controlled here, namely color,
global spatial frequency spectrum, and spatial coher-
ence.

The present results, concerning the categorization of
objects in natural scenes, complement previous findings
in the domain of face perception. Those previous
studies investigated a similar question, namely to what
extent the well-known N170 component, a negative
differential activity which is elicited by the perception
of faces over occipitotemporal areas, merely reflects the
presence of low-level perceptual cues or rather indicates
that these cues are being processed into the percept of a
face (Rossion & Jacques, 2008). Those studies indicated
that, although cue-specific activity may be elicited in
earlier intervals (less than 100 ms), true categorical
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effects are only observed in the classic N170 window
(Rossion & Caharel, 2011). Following the N170 time
interval, other studies which examined a face/car
categorization paradigm observed that a differential
component around 200 ms reflects the accumulation of
the available perceptual evidence, with the ultimate
goal of performing a perceptual decision (Philiastides &
Sajda, 2006, 2007).

The manipulation of task context was not effective
here in modulating early ERP signatures of categori-
zation in the degraded conditions. This result does not
support the possibility that, in separate trials, coarse
information interacts with fine-grained information,
thus favoring categorization in the same way that has
been suggested for the processing of a single scene (Bar,
2004). Rather, this result is consistent with several
previous results which indicate that this early ERP
modulation requires little or no attentional resources, is
resistant to a concurrent selective-attention task (Fei-
Fei, VanRullen, Koch, & Perona, 2005), can be
similarly observed when two or more scenes have to be
processed in parallel (Rousselet, Fabre-Thorpe, &
Thorpe, 2002; Rousselet, et al., 2004), and is not
facilitated by 3 weeks of training (Fabre-Thorpe et al.,
2001). A significant effect of task context was observed
on behavioral responses after picture offset. This
behavioral effect may indicate that the effects of task
context in the degraded conditions are exerted in a later
time interval than the window of 150–300 ms that was
examined here. However, the direction of the behav-
ioral effect indicated worse performance in the se-
quential compared to the mixed condition, suggesting
that the sequential context interfered with correct
categorization rather than supported it (Bruner &
Potter, 1964). Finally, an effect of task context was
observed in the intact condition, with less pronounced
ERPs in the sequential compared to the mixed
condition. However, behavioral performance did not
differ between the two contexts. Therefore, future
studies could better explore the effects of task context
on the behavioral categorization of objects in scenes
and on its electrocortical correlates.

Conclusions

We examined the early ERP modulations associated
with the categorization of objects in natural scenes
which were equalized in color and spectral amplitude
and controlled in terms of spatial coherence. An
occipitotemporal ERP modulation was observed for
correctly versus incorrectly categorized objects in
scenes at an intermediate level of phase scrambling.
These results suggest that, as early as 150 ms, an ERP
modulation may reflect the processing of the available

diagnostic features, which is predictive of later accurate
behavioral categorization.

Keywords: categorization, ERPs, spatial frequencies,
visual cortex
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Footnote

1 In a preliminary analysis, the same pattern of
results was also observed when selecting electrodes and
time intervals based on the amplitude of the correct–
incorrect differential. However, as this selection may
lead to a statistical bias (as suggested by Kilner, 2013),
we chose to report data from a region and time interval
of interest based on independent data.
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ElectroMagnetoEncephalography software: Over-
view and integration with other EEG/MEG tool-
boxes. Computational Intelligence and Neuroscience,
2011, 861705, doi:10.1155/2011/861705.

Philiastides, M. G., & Sajda, P. (2006). Temporal
characterization of the neural correlates of percep-
tual decision making in the human brain. Cerebral
Cortex, 16(4), 509–518, doi:10.1093/cercor/bhi130.

Philiastides, M. G., & Sajda, P. (2007). EEG-informed
fMRI reveals spatiotemporal characteristics of
perceptual decision making. Journal of Neurosci-
ence, 27(48), 13082–13091, doi:10.1523/
JNEUROSCI.3540-07.2007.

Potter, M. C. (1975, March 14). Meaning in visual
search. Science, 187(4180), 965–966, doi:10.1126/
science.1145183.

Rossion, B., & Caharel, S. (2011). ERP evidence for the
speed of face categorization in the human brain:
Disentangling the contribution of low-level visual
cues from face perception. Vision Research, 51(12),
1297–1311, doi:10.1016/j.visres.2011.04.003.

Rossion, B., & Jacques, C. (2008). Does physical
interstimulus variance account for early electro-

Journal of Vision (2015) 15(8):14, 1–14 De Cesarei, Peverato, Mastria, & Codispoti 13

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934120/ on 07/06/2016

http://www.ncbi.nlm.nih.gov/pubmed/14507255
http://jov.arvojournals.org/article.aspx?articleid=2121614
http://www.ncbi.nlm.nih.gov/pubmed/19271872
http://jov.arvojournals.org/article.aspx?articleid=2122215
http://www.ncbi.nlm.nih.gov/pubmed/18318607
http://jov.arvojournals.org/article.aspx?articleid=2122216


physiological face sensitive responses in the human
brain? Ten lessons on the N170. Neuroimage, 39(4),
1959–1979, doi:10.10.16/j.neuroimage.2007.10.011.

Rousselet, G. A., Fabre-Thorpe, M., & Thorpe, S. J.
(2002). Parallel processing in high-level categoriza-
tion of natural images. Nature Neuroscience, 5,
629–630, doi:10.1038/nn866.

Rousselet, G. A., & Pernet, C.R. (2011). Quantifying
the time course of visual object processing using
ERPs: It’s time to up the game. Frontiers in
Psychology, 23(2), 107, doi:10.3389/fpsyg.2011.
00107.

Rousselet, G. A., Pernet, C. R., Bennett, P. J., &
Sekuler, A. B. (2008). Parametric study of EEG
sensitivity to phase noise during face processing.
BMC Neuroscience, NN, 9, 98, doi:10.1186/
1471-2202-9-98.

Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M.
(2004). Processing of one, two or four natural
scenes in humans: The limits of parallelism. Vision
Research, 44(9), 877–894.

Schendan, H. E., & Kutas, M. (2007). Neurophysio-
logical evidence for the time course of activation of
global shape, part, and local contour representa-
tions during visual object categorization and
memory. Journal of Cognitive Neuroscience, 19,
734–749, doi:10.1162/jocn.2007.19.5.734.

Schiller, P. H., & Kendall, J. (2004). Temporal factors
in target selection with saccadic eye movements.
Experimental Brain Research, 154(2), 154–159, doi:
10.1007/s00221-003-1653-8.
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