1,911 research outputs found

    Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017

    Get PDF
    The study concerns the analysis of 220Rn (thoron) recorded in the surface soil in two sites of the Campi Flegrei caldera (Naples, Southern Italy) characterized by phases of volcanic unrest in the seven-year period 1 July 2011–31 December 2017. Thoron comes only from the most surface layer, so the characteristics of its time series are strictly connected to the shallow phenomena, which can also act at a distance from the measuring point in these particular areas. Since we measured 220Rn in parallel with 222Rn (radon), we found that by using the same analysis applied to radon, we obtained interesting information. While knowing the limits of this radioisotope well, we highlight only the particular characteristics of the emissions of thoron in the surface soil. Here, we show that it also shows some clear features found in the radon signal, such as anomalies and signal trends. Consequently, we provide good evidence that, in spite of the very short life of 220Rn compared to 222Rn, both are related to the carrier effect of CO2, which has significantly increased in the last few years within the caldera. The hydrothermal alterations, induced by the increase in temperature and pressure of the caldera system, occur in the surface soils and significantly influence thoron's power of exhalation from the surface layer. The effects on the surface thoron are reflected in both sites, but with less intensity, the same behavior of 222Rn following the increasing movements and fluctuations of the geophysical and geochemical parameters (CO2 flux, fumarolic tremor, background seismicity, soil deformation). An overall linear correlation was found between the 222−220Rn signals, indicating the effect of the CO2 vector. The overall results represent a significant step forward in the use and interpretation of the thoron signal

    Thermally Driven Selective Nanocomposite PS-PHB/MGC Nanofibrous Conductive Sensor for Air Pollutant Detection

    Get PDF
    The potentials to use the working temperature to tune both the sensitivity and the selectivity of a chemical sensor based on a nanostructured and nanocomposite polymer layer have been investigated and described. Thus, in a single step, a peculiar chemical layer was grown up onto IDE (Interdigitated Electrode) microtransducers by electrospinning deposition and using a single-needle strategy. The 3-component nanofibers, obtained from a mixture of polystyrene and polyhydroxibutyrate (insulating thermoplastics) and a known concentration of mesoporous graphitized carbon nanopowder, appeared highly rough on the surface and decorated with jagged islands but homogeneous in shape and diameter, with the nanofillers aggregated into clusters more or less densely packed through the fibers. The resulting sensor was conductive at room temperature and could work between 40 and 80°C without any apparent degradation. As the fibrous sensing layer was heated, the current increased and the sensitivity to some classes of VOCs such as an oxidizing gas drastically changed depending on the working temperature. More in detail, the sensor resulted highly sensitive and selective to acetic acid at 40°C but the sensitivity fell down, decreasing by 96%, when the sensor operated at 80°C. On the other hand, although an increase in temperature caused a general decrease in sensitivity to the tested VOCs (with a maximum of 14, 81, and 78% for amine, acetone and toluene, respectively) and water vapors (with a maximum of 55%), higher temperature affected only slightly the amine permeation, thus modifying the partial selectivity of the sensor to these chemicals. Conversely, when the operating temperature increased, the sensitivity to the detected gas, NO2, increased too, reporting a ~2 ppb limit of detection (LOD), thus confirming that the temperature was able to drive the selectivity of nanocomposite polymeric sensors

    Ventricular pacemaker lead in the left hemithorax: Mechanisms and evidence-based management of a late-onset hazardous complication

    Get PDF
    Late-onset migration of pacing leads in the left hemithorax is a rare but potentially life-threatening complication. Radiological examinations are required to detect any involvement of either left ventricle or lung parenchyma, prompting immediate surgical extraction in this setting. Identification of high-risk patients is mandatory to prevent this complex iatrogenic complication

    controlled field study evaluating the clinical efficacy of a topical formulation containing emodepside and praziquantel in the treatment of natural cat aelurostrongylosis

    Get PDF
    BackgroundAelurostrongylus abstrusus is the most important nematode affecting the respiratory tract of cats in terms of prevalence and clinical relevance. The aim of this randomised controlled field study was to confirm the efficacy of the spot-on containing emodepside/praziquantel (Profender, Bayer Animal Health) in the treatment of aelurostrongylosis.MethodsSeventeen cats with aelurostrongylosis and presenting with clinical and/or radiographic signs were included in the study. Eight cats received two biweekly doses of emodepside/praziquantel, while nine cats were allocated to a control group and received a rescue treatment at the end of the study. Clinical response was the primary outcome, while the secondary end point was the reduction of larval shedding in faeces.ResultsTwo weeks after the first application, the cats showed a significant, though partial, recovery of clinical signs with complete clinical and parasitological resolution. The resolution of inflammatory leucogram and a significant reduction of radiographic lesions were observed two weeks after the second treatment. Red blood cells and albumin values significantly increased after eight weeks from the second application, together with the complete regression of radiographic patterns.ConclusionTwo applications of this spot-on solution two weeks apart assured complete cessation of larval shedding and led to a complete clinical, clinicopathological and radiographic recovery

    Phaseolus vulgaris extract ameliorates high-fat diet-induced colonic barrier dysfunction and inflammation in mice by regulating peroxisome proliferator-activated receptor expression and butyrate levels

    Get PDF
    Obesity is a health concern worldwide, and its onset is multifactorial. In addition to metabolic syndrome, a high-fat diet induces many deleterious downstream effects, such as chronic systemic inflammation, a loss of gut barrier integrity, and gut microbial dysbiosis, with a reduction of many butyrate-producing bacteria. These conditions can be ameliorated by increasing legumes in the daily diet. White and kidney beans (Phaseolus vulgaris L.) and their non-nutritive bioactive component phaseolamin were demonstrated to mitigate several pathological features related to a metabolic syndrome-like condition. The aim of the present study was to investigate the molecular pathways involved in the protective effects on the intestinal and liver environment of a chronic oral treatment with P. vulgaris extract (PHAS) on a murine model of the high-fat diet. Results show that PHAS treatment has an anti-inflammatory effect on the liver, colon, and cecum. This protective effect was mediated by peroxisome proliferator-activated receptor (PPAR)-α and γ. Moreover, we also observed that repeated PHAS treatment was able to restore tight junctions' expression and protective factors of colon and cecum integrity disrupted in HFD mice. This improvement was correlated with a significant increase of butyrate levels in serum and fecal samples compared to the HFD group. These data underline that prolonged treatment with PHAS significantly reduces some pathological features related to the metabolic syndrome-like condition, such as inflammation and intestinal barrier disruption; therefore, PHAS could be a valid tool to be associated with the therapeutic strategy

    Evaluation of Bronchoscopy and Bronchoalveolar Lavage Findings in Cats With Aelurostrongylus abstrusus in Comparison to Cats With Feline Bronchial Disease

    Get PDF
    The cat lungworm Aelurostrongylus abstrusus is a cause of lower respiratory tract disease worldwide. Bronchoscopy and bronchoalveolar lavage (BAL) are important tools for diagnosing respiratory diseases in cats. Therefore, the aim of the study was to investigate the usefulness of bronchoscopy and BAL in the diagnosis of A. abstrusus. Findings from bronchoscopic examination and BAL of 24 naturally infected cats were evaluated and compared with those of 12 cats with idiopathic Feline Bronchial Diseases (FBDs). Data were analyzed using Mann-Whitney or Fisher's exact tests. No significant bronchoscopic differences were detected between cats with aelurostrongylosis and FBDs in bronchial mucus, nodular lesions, and airway collapse. On the other hand, airway hyperemia, epithelial irregularities, and bronchial stenosis were observed more frequently in cats affected by FBDs than aelurostrongylosis, while bronchiectasis was found only in cats infected by A. abstrusus. Neutrophilic, eosinophilic, lymphocytic, and mixed inflammation were recorded in both groups. Bacteria or bacterial DNA was identified regardless of the presence or absence of A. abstrusus with no significant differences between groups. Larvae of A. abstrusus were cytologically detected in 5 of the 24 cats (20.8%) with aelurostrongylosis. These results indicate that, although some findings on bronchoscopic examination (i.e., bronchiectasis) can be described more frequently in cats infected by A. abstrusus, bronchial alterations and cytological findings in aelurostrongylosis are not specific unless larvae are observed and overlap with those of other feline airway diseases
    • …
    corecore