14 research outputs found

    Structural evolution of lamellar surfactant-silica hybrids upon calcination

    Full text link
    A lamellar mesostructured silica was subjected to a progressive heat treatment in order to study its structural evolution and the characteristics of the resulting calcined powder. By combining informations from several physical methods, i.e. TG-DTA, XRD, TEM and nitrogen adsorption, it has been possible to evidence the formation of very small particles of silica at a temperature around 450 degreesC, exhibiting a very high value of aspect ratio, consequently to the template loss by combustion. By increasing the temperature above 530 degreesC, the dehydroxylation promotes a decrease in the surface area, followed by the sintering process at higher temperature, which nearly annihilate the surface area of the particles. (C) 2003 Elsevier Science Ltd. All rights reserved

    Multidisciplinary characterization of the long-bone cortex growth patterns through sheep's ontogeny

    No full text
    Bone researches have studied extant and extinct taxa extensively trying to disclose a complete view of the complex structural and chemical transformations that model and remodel the macro and microstructure of bone during growth. However, to approach bone growth variations is not an easy task, and many aspects related with histological transformations during ontogeny remain unresolved. In the present study, we conduct a holistic approach using different techniques (polarized microscopy, Raman spectroscopy and X-ray diffraction) to examine the histomorphological and histochemical variations in the cortical bone of sheep specimens from intrauterine to adult stages, using environmentally controlled specimens from the same species. Our results suggest that during sheep bone development, the most important morphological (shape and size) and chemical transformations in the cortical bone occur during the first weeks of life; synchronized but dissimilar variations are established in the forelimb and hind limb cortical bone; and the patterns of bone tissue maturation in both extremities are differentiated in the adult stage. All of these results indicate that standardized histological models are useful not only for evaluating many aspects of normal bone growth but also to understand other important influences on the bones, such as pathologies that remain unknown. (C) 2015 Elsevier Inc. All rights reserved.Bioarchaeolog
    corecore