24 research outputs found

    Landslide susceptibility mapping on the islands of Vulcano and Lipari (Aeolian Archipelago, Italy), using a multi-classification approach on conditioning factors and a modified GIS matrix method for areas lacking in a landslide inventory

    Get PDF
    The final publication is available at (la publicación final está disponible en): https://link.springer.com/article/10.1007/s10346-019-01148-0#citeas https://rdcu.be/duoifIn areas prone to landslides, the identification of potentially unstable zones has a decisive impact on the risk assessment and development of mitigation plans. Active volcanic islands are particularly prone to instability phenomena as they are always in the early stage of dynamic unrest. A historical example of slope instability is the landslide which occurred in 1988 along the northwestern flank of La Fossa Cone on the island of Vulcano (Aeolian Archipelago). Based on this past activity, a susceptibility assessment using the bivariate technique of the GIS matrix method (GMM) was carried out on the islands of Lipari and Vulcano. Nevertheless, this case is congruent with those where a part of the surface was not assigned to stable or unstable areas, since a comprehensive inventory was only available for the island of Lipari. Some of the implemented steps of the susceptibility matrix method were modified to enable the model developed in the Lipari area to be applied to both islands. Considering the important role that the classification of conditioning factors plays in susceptibility analysis, the degree of association with landslide spatial distribution for the multiple classifications of each factor was assessed. Furthermore, an innovative clustering approach based on text and data mining techniques (self-organizing map neural network) was applied and compared with a heuristic classification of the categorical variable of lithology units. In addition to the extensive contingency analysis, up to 14 factor combinations were submitted to the GMM, validated and compared so as to select the one that best explains the susceptibility zoning. The effects of these incorporated processes in the previous phase of classification were discussed and reliminary susceptibility map was generated for both islands. After the validation of the susceptibility assessment, it is shown that the highest classes (High and Very High) matched 76.9% (relative accuracy) of the test inventory, while the lower susceptibility classes (Very Low and Low) resulted in a degree of fit of 14.39% (relative error).This work was supported by the DPC-INGV Project V3 on the island of Vulcano (http://sites.google.com/site/progettivulcanologici), founded by the Italian National Institute of Geophysics and Volcanology and by the Italian Civil Protection Department. The 2008 ALS DTM was provided by the Italian Ministry for Environment.This work has been supported by the RNM121 Group of the Andalusian Regional Government

    Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei

    Get PDF
    Understanding the mechanisms that control the accumulation of large silicic magma bodies in the upper crust is key to determine the potential of volcanoes to form caldera-forming eruptions. Campi Flegrei is an active and restless volcano, located in one of the most populated regions on Earth, which has produced two cataclysmic caldera-forming eruptions and numerous smaller eruptive events over the last 60,000 years. Here we combine the results of an extensive petrological survey with a thermo-mechanical model to investigate how the magmatic system shifts from frequent, small eruptions to large caldera-forming events. Our data reveal that the most recent eruption of Monte Nuovo is characterized by highly differentiated magmas akin to those that fed the pre-caldera activity and the initial phases of the caldera-forming eruptions. We suggest that this eruption is an expression of a state shift in magma storage conditions, whereby significant amounts of volatiles start to exsolve in the shallow reservoir. The presence of an exsolved gas phase has fundamental consequences for the physical properties of the reservoir and may indicate that a large magma body is currently accumulating underneath Campi Flegrei

    Review of multiple hazards in volcanic islands to enable the management of long-term risks: the cases of Ischia and Vulcano, Italy

    Get PDF
    The management of long-term volcanic risks represents a challenge that requires a close cooperation between science and decision-making. This is particularly crucial in volcanic islands, which are characterized by multiple hazards concentrated in a relatively small environment, often associated with a large seasonality of exposure due to tourism. The scientific challenges are mainly the quantification and the characterization of the interactions among the multiple hazardous phenomena that may occur during the different “states of thevolcano” (quiescence, unrest, eruption) and the definition of robust methods to forecast the transition between these states. For these topics, the emerging scientific knowledge is often rather limited and uncertain and, also in case it was well constrained, difficult to communicate to decision makers due to its intrinsic complexity. On the other side, the challenge for decision making is to assimilate this uncertain knowledgeand translate it into actions. Here, we discuss the experience gained in two working groups (WGs) in charge of reviewing the state of knowledge about volcanic hazards for the Italian volcanic islands of Ischia and Vulcano to build the scientific ground for subsequent decision making. These WGs, formed within the agreement between INGV and the Italian Civil Protection Department, involved about 20 researchers from INGV and Universities, as well as representatives of the Italian Civil Protection, to facilitate the reciprocal understanding and to address the work toward useful results for decision making. The WGs reviewed all the potential volcanic hazards for Ischia and Vulcano based on literature, results of previous projects, as well as ad hoc audits of other experts on specific topics, and organized a workshop to present the results and receive feedbacks from the extended scientific community

    Geological map of the Tocomar Basin (Puna Plateau, NW Argentina): Implication for the geothermal system investigation

    Get PDF
    This paper presents a detailed geological map at the 1:20,000 scale of the Tocomar basin in the Central Puna (north-western Argentina), which extends over an area of about 80 km2 and displays the spatial distribution of the Quaternary deposits and the structures that cover the Ordovician basement and the Tertiary sedimentary and volcanic units. The new dataset includes litho-facies descriptions, stratigraphic and structural data and new 234U/230Th ages for travertine rocks. The new reconstructed stratigraphic framework, along with the structural analysis, has revealed the complex evolution of a small extensional basin including a period of prolonged volcanic activity with different eruptive centres and styles. The geological map improves the knowledge of the geology of the Tocomar basin and the local interplay between orogen-parallel thrusts and orogen-oblique fault systems. This contribution represents a fundamental support for in depth research and also for encouraging geothermal exploration and exploitation in the Puna Plateau regionFil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Groppelli, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Ahumada, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Aldega, Luca. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Berardi, Gabriele. Università Roma Tre III; ItaliaFil: Bigi, Sabina. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Caricchi. Chiara. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Corrado, Sveva. Università Roma Tre III; ItaliaFil: De Astis, Gianfilippo. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: De Benedetti, Arnaldo Angelo. Università Roma Tre III; ItaliaFil: Invernizzi, Chiara. Universita Degli Di Camerino; ItaliaFil: Norini, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Soligo, Michele. Università Roma Tre III; ItaliaFil: Taviani, Sara. University of Milano-Bicocca; ItaliaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Giordano, Guido. CNR Istituto di Geologia Ambientale e Geoingegneria; Italia. Università Roma Tre III; Itali

    The italian quaternary volcanism

    Get PDF
    The peninsular and insular Italy are punctuated by Quaternary volcanoes and their rocks constitute an important aliquot of the Italian Quaternary sedimentary successions. Also away from volcanoes themselves, volcanic ash layers are a common and frequent feature of the Quaternary records, which provide us with potential relevant stratigraphic and chronological markers at service of a wide array of the Quaternary science issues. In this paper, a broad representation of the Italian volcano logical community has joined to provide an updated comprehensive state of art of the Italian Quaternary volcanism. The eruptive history, style and dynamics and, in some cases, the hazard assessment of about thirty Quaternary volcanoes, from the north ernmost Mt. Amiata, in Tuscany, to the southernmost Pantelleria and Linosa, in Sicily Channel, are here reviewed in the light of the substantial improving of the methodological approaches and the overall knowledge achieved in the last decades in the vol canological field study. We hope that the present review can represent a useful and agile document summarising the knowledege on the Italian volcanism at the service of the Quaternary community operating in central Mediterranean area

    Public dissemination of science and its language: test and school reports to improve the mutual comprehension between scientists and people

    No full text
    Public awareness of science, public understanding of science, or more recently, Public Engagement with Science and Technology (PEST) are terms relating to the attitudes, behaviours, opinions, and activities that comprise the relations between the general public or lay society as a whole to scientific knowledge and organisation. It is a comparatively new approach to the task of exploring the multitude of relations and linkages science, technology, and innovation have among the general public. While earlier work in the discipline had focused on augmenting public knowledge of scientific topics, in line with the information deficit model of science communication , the discrediting of the model has led to an increased emphasis on how the public chooses to use scientific knowledge and on the development of interfaces to mediate between expert and lay understandings of an issue. To explore a particular aspect of these topics, we conducted a survey to assess the readability and comprehension of some scientific divulgation texts. First of all, we selected two texts of volcanological topics using the GULPEASE index. The Gulpease Index is an index of readability of a text calibrated on the Italian language. Compared to others, it has the advantage of using the word length in letters instead of syllables, simplifying the automatic calculation. Complementing the Gulpease index we considered the evaluation of the common vocabulary used in the text, or the 'notoriety' of the single terms used. For our survey we used one text with a medium-high Gulpease index (a dissemination text addressed to the elementary school), and one text with a medium-low Gulpease index (addressed to an audience with a medium-high education level). We created a questionnaire to assess the understanding and attitude of the public in relation to the texts of volcanological dissemination examined. In particular, we have investigated five dimensions: how the title is; how the text is; how the information contained in the text are, diffusion to other people; desire to deepen the topic of the text. In this paper, we present the results of the survey conducted in the early months of 2018, in collaboration with the students of the Peano scientific lyceum in Rome, as part of the alternating training project “Gulpease and beyond”. We think that this type of work should become a routine activity to bring scientific knowledge as close as possible to the life and choices of conscious citizens. Because citizens' decisions and choices play a fundamental role to reducing natural risks.UnpublishedNapoli, Italia2TM. Divulgazione Scientific

    Palaeomagnetic dating of the Neostromboli succession

    No full text
    The Neostromboli volcanic succession is characterized by packages of lava flow units and scoria beds erupted from the summit of the Stromboli volcano, and by scoria cones and lava flows poured out from lateral vents and fissures. Available radiometric ages constrain Neostromboli activity in the 14–4 ka BP age window, but the chronological relations of central vs. peripheral activity are still poorly understood. Furthermore, radiometric and palaeomagnetic ages for some of the peripheral eruptions are strikingly inconsistent. Here we report on the palaeomagnetic dating of thirty-four sites from Neostromboli products. Seventeen are new palaeomagnetic directions, while additional seventeen ages are recalculated - using published directions by Speranza et al. (2008) - with the recent SHA.DIF.14K palaeo-secular variation (PSV) field model. We show that the beginning of Neostromboli succession could be much younger than the commonly accepted ≈14 ka onset, providing our oldest data an age of ≈9 ka. The improved geochronological resolution allowed by palaeomagnetic dating suggests that the early stages of the Neostromboli activity occurred at 9–8 ka BP and were characterized by summit lava flow units blanketing both the SW and northern volcano flanks; after ≈7.5 ka lateral eruptions from peripheral cones and fissures became dominant. We suggest that the intense flank activity enabled magma-water interaction thus yielding explosive activity and repeated collapse events, leading to the Sciara del Fuoco formation. Our work confirms that PSV analysis of Holocene volcanics may yield eruption chronology definition with an accuracy unlikely to be achieved with other radiometric techniques

    Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago)

    No full text
    Stromboli is famous for its persistent volcanic activity consisting of periodic discrete explosions alternating with lava effusion and more violent explosions. This paper presents a detailed reconstruction of the geological history of Stromboli and description of the characteristics and distribution of the volcanic units and structural features. Six main growth stages (Eruptive Epochs 1–6), in addition to the c. 200 ka activity of Strombolicchio, are recognized between c. 85 ka and the present day, displaying a magma composition ranging from calc-alkaline to potassic series which usually varies with changing Eruptive Epochs. The Epochs are subdivided into sequences of eruptions and characterized by dominant central-vent summit activity with episodic phases of flank activity along fissures and eccentric vents. The activity was repeatedly interrupted by erosional and destructive phases driven by recurrent vertical caldera-type (cc1–5) and sector (and flank) collapses (sc1–7) and generally associated with significant quiescences. The different serial character of the Stromboli rocks is associated with largely variable trace element contents and isotope ratios. These petrochemical characteristics together with our new stratigraphy indicate that magmas, generated in a heterogeneous mantle wedge, underwent complex differentiation processes during their ascent. Magmas are characterized by polybaric evolution residing in small magma reservoirs that are alternatively tapped by the different collapses.Published397-4711V. Storia eruttiv

    The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy)

    No full text
    Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi Flegrei (i.e., Campanian Ignimbrite, CI, ~ 39 ka and Neapolitan Yellow Tuff, NYT, ~ 15 ka). While the CI displays linear compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clinopyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing remobilized portions of a “mature” (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal mushes of becoming eruptible upon recharge
    corecore