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Abstract 

 

In areas prone to landslides, the identification of potentially unstable zones has a decisive impact on the 

risk assessment and development of mitigation plans. Active volcanic islands are particularly prone to 

instability phenomena as they are always in the early stage of dynamic unrest. A historical example of 

slope instability is the landslide which occurred in 1988 along the northwestern flank of La Fossa Cone 

on the island of Vulcano (Aeolian Archipelago). Based on this past activity, a susceptibility assessment 

using the bivariate technique of the GIS matrix method (GMM) was carried out on the islands of Lipari 

and Vulcano. Nevertheless, this case is congruent with those where a part of the surface was not assigned 

to stable or unstable areas, since a comprehensive inventory was only available for the island of Lipari. 

Some of the implemented steps of the susceptibility matrix method were modified to enable the model 

developed in the Lipari area to be applied to both islands. Considering the important role that the 

classification of conditioning factors plays in susceptibility analysis, the degree of association with 

landslide spatial distribution for the multiple classifications of each factor was assessed. Furthermore, an 

innovative clustering approach based on text and data mining techniques (self-organizing map neural 

network) was applied and compared with a heuristic classification of the categorical variable of lithology 

units. In addition to the extensive contingency analysis, up to 14 factor combinations were submitted to 

the GMM, validated and compared so as to select the one that best explains the susceptibility zoning. The 

effects of these incorporated processes in the previous phase of classification were discussed and 

reliminary susceptibility map was generated for both islands. After the validation of the susceptibility 

assessment, it is shown that the highest classes (High and Very High) matched 76.9% (relative accuracy) 

of the test inventory, while the lower susceptibility classes (Very Low and Low) resulted in a degree of fit 

of 14.39% (relative error). 
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1. Introduction 

 

Population growth, extending to mountainous areas, implies an increase in the number of properties, 

infrastructures and lives at risk. Landslides are often triggered by earthquakes and intense precipitations, 

but they are also induced by anthropogenic activity (Varnes 1984; Panizza 1996; Aleotti and Chowdhury 

1999; Guzzetti et al. 1999; Lacasse and Nadim 2009). Thus, progress in landslide risk management 

mapping and its effective use for land planning is necessary to mitigate destructive effects. In the specific 

case of volcanic edifices, high and steep slopes in pyroclastic deposits are prone to slope instability 

phenomena. In the short term, a volcano edifice is a transient landform where unstable pyroclastic 

materials are easily involved in slope and surface water processes. In the long term, the magnitude of 

these processes decreases, but their impact on landscapes, especially if this includes human activity, can 

be major. Moreover, the combined effect of meteoric water and condensation water from the fumaroles 

degassing during periods of unrest (Marsella et al. 2015a) can infiltrate into these kinds of rocks. Thus, a 

major weakening of the mechanical strength of the rocks, caused by the negative effects of high water 

pore pressure, enhances the triggering of landslides. Considering this geological setting, slope failures, 

especially when concurrent to rainfalls, can produce debris avalanches and lahars that can rapidly travel 

long distances from the source (Thouret 1999). 

 

Flank instability in volcanic environments is a phenomenon that has affected the study area, for example a 

landslide that affected the NE-flank of La Fossa volcano on the island of Vulcano. On April 20, 1988, 

after a period of unrest from June 1987 to 1990 (Barberi et al. 1991), which also caused a small tsunami 

with waves less than 1 m high (Tinti et al. 1999). Taking into account the potential emergence of this 

phenomenon, the scientific community has initiated a ground deformation monitoring program on the 

Lipari and Vulcano volcanic complex by using a dense GPSnetwork (Bonforte and Guglielmino 2008) 

and the Differential Synthetic Aperture Radar Interferometry technique (DInSAR) (Scifoni et al. 2015). In 

addition, research has been carried out to model the landslide mechanisms on the island of Vulcano 

(Marsella et al. 2013; Tinti et al. 1999). Building on the previous landslide risk assessment work, this 

current paper addresses the landslide susceptibility zoning for the problem area, as well as for 

those areas with limited data. 

 

Despite the advantages brought by geographic information system (GIS) tools for geomorphologic 

mapping (Chacón et al. 2006; Wan 2009), the documentation available (aerial photographs, topographic 

map) and the scale at which it is produced can make the generation of a comprehensive inventory 

difficult. In addition, there are several aspects influencing the reliability (Malamud et al. 2004; Pavel et al. 

2008, 2011) of the landslide inventory and its degree of association with each conditioning factor. Among 

these aspects, the land use, the cartographer’s level of experience and their interpretation criteria and 

subjectivity (Wan 2009) are common examples. Consequently, geoscientists and engineers have to deal 

with non-assigned features—i.e. nonexistence of positive (zones with landslides) and/or negative data 

(zones without landslides) (Melchiorre et al. 2008)—which prevents the direct application of 

conventional techniques for susceptibility and hazard mapping. To overcome the constraints of 

nonassigned areas, the principle of similar landslides occurring in areas with similar conditions can be 

considered (Soeters and van Westen 1996). As discussed in literature (Ayalew and Yamagishi 2005), the 

analysis of the cause-effect relationships in susceptibility assessment is highly dependent on the selection 

of conditioning factors (Rahmati et al. 2016) and their classification. 

 

In this work, the method GIS matrix method (GMM) (DeGraff and Romesburg 1980), which involves a 

statistical bivariate analysis applicable to areas with a set of simple parameters (starting with limited 

information), has been adopted for the assessment of landslide susceptibility. More specifically, landslide 

susceptibility zoning for the islands of Lipari and Vulcano was obtained by modifying the common GMM 

to make it applicable to areas without a landslide inventory. To improve the performance of the adopted 

model, two approaches for the classification of lithological units were used; a heuristic method and a self-

organizing map (SOM)-based clustering. In addition, multiple conditioning factor combinations were 
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tested and validated. The proposed method may be adopted for a preliminary landslide susceptibility map 

in other areas without a pre-existing landslide inventory. 

 

 

2. Study area 

 

The Aeolian Archipelago (Southern Tyrrhenian Sea, Italy) is located between the northeastern Sicilian 

coast and the Tyrrhenian back-arc basin, almost on the boundary between the African and Eurasian plates 

(Ventura 2013) (Fig. 1). The seven Aeolian Islands are composite volcanic structures formed by the 

superposition of multiple centres and recurrent volcanic and tectonic events, with many sectors and 

central collapses. These islands lie on the Calabro–Peloritano basement, a block of the European 

continent that detached itself from Sardinia–Corsica and migrated southwestwards during the Miocene–

Quaternary opening of the Tyrrhenian Sea. The Aeolian arc is cut by a complex pattern of fault systems 

(Ventura 2013). Structural, seismological and volcanological data (Ventura et al. 1999; De Astis et al. 

2003; Ventura 2013) suggest that under present-day strain conditions, there is a strike-slip deformation in 

the Aeolian central sector—the Tindari– Letojanni tectonic system (Locardi and Nappi 1979; Ventura 

1994; Mazzuoli et al. 1995; Ventura 1995; De Astis et al. 2003; Ventura 2013), where Vulcano is located, 

at the southeastern end of NNW– SSE-elongated Salina–Lipari belt. 

 

Accordingly, the structural pattern of Vulcano is dominated by a major NW–SE- to NNW–SSE-strike 

fault system (Frazzetta et al. 1982; Ventura 1994; Mazzuoli et al. 1995; Ventura 1995; Ventura et al. 

1999), which is the shallow expression of the Tindari– Letojanni (TL) system (Continisio et al. 1997; 

Lanzafame and Bousquet 1997). This study is focused on the islands of Vulcano and Lipari, which have 

been characterized by different types of landslides (such as rock fall and debris flow). On Vulcano, the 

areas with the most active slope processes are at the La Fossa cone and caldera. The northern sector of the 

La Fossa cone summit is the site of intense gas emissions from several fumaroles that have reached 

Tmax~700 °C (January 1993), decreasing to the present Tmax of about 400 °C. The cone is quite regular 

in shape, with the exception of the northeastern sector of the Forgia Vecchia (FV) parasitic crater where 

quite a large depression corresponding to the crater rim is clearly visible (Marsella et al. 2011, 2015b). 

Different types of instability processes were documented or recognized on the La Fossa cone from 

morphological evidence (Tommasi et al. 2007). The 1988 landslide (~ 200,000 m3 in volume) affected 

some layers of pyroclastic material (Tinti et al. 1999). 

 

The island of Lipari is located in the central sector of the Aeolian Archipelago and is the largest (total 

area of 38 km2) of the seven islands. Several, partially overlapping, volcanic edifices have been active at 

different times, essentially controlled by the main NNW–SSE and N–S regional tectonic trends. The 776 

AD Monte Pilato eruption represents the youngest volcanic activity (Forni et al. 2013; Lucchi 2013), 

which occurred on the island that nowadays is in a quiescent stage with a few active low-temperature 

fumaroles and hot springs, mostly located in the eastern sector of the island close to Bagni Termali di San 

Calogero and Bagno Secco and the most inhabited areas of the western sector. As a result of its volcanic 

origin, the island is covered with pumice and cineritic pyroclastic rocks that have caused translational, 

rotational landslides and debris flows. The structural pattern observed on Lipari is dominated by major 

faults and alignments of eruptive centres that follow the NNW–SSE direction of the TL Fault System. 

Four volcano-tectonic collapse structures have been recognized on Lipari from subvertical escarpments 

with curved geometries, whose rims are invariably marked by high-angle unconformities between the pre-

collapse and in-filling volcanic products post-collapse (Forni et al. 2013). 

 

The complete geological evolution, stratigraphy and volcanological history of both Vulcano and Lipari 

are available on the 1:10,000 scale geological maps and in associated articles which have recently been 

published: De De Astis et al. (2013) and Lucchi (2013), respectively. 

 

In general, the geological structures and landforms, such as the ancient rims of craters, collapses and 

faults with high slopes and fractured rocks, are areas prone to landslides. 
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3. Susceptibility zoning 

 

The results of a susceptibility assessment depend on the variables or conditioning factors taken into 

account, and the classes into which they are divided. Accordingly, in this research, specific processes in 

the classification of numerical factors and lithology (nominal data) were addressed with the aim of not 

limiting the classification to a single grouping of data or a single approach. Thus, more than one result 

could be compared and the most suitable classification for each factor selected. Similarly, to determine 

the best set of variables, multiple factor combinations were introduced into the GMM and their resulting 

susceptibility distributions validated. In addition, taking into account the lack of an inventory for the area 

of the island of Vulcano, the general GMM was modified, enabling its application on an area without a 

landslide inventory. 

 

3.1 Definition of conditioning factors 

 

A susceptibility assessment depends directly on different factors, each one favoring to an extent the 

possibility of one type of landslide occurring in a specific zone. Owing to the complex nature of these 

factors, the variety of their characteristics and their own spatial distribution, selecting a simple 

combination of conditioning factors is not trivial. Furthermore, the availability of the information related 

to these factors can prevent the use of more than one variable in the susceptibility assessment. This fact 

leads experts to decide on the specific set of variables selected and try to validate different combinations 

of factors or scenarios (Meten et al. 2015; Van Westen et al. 2003). In this paper, the susceptibility 

analysis was carried out based on the available information from which seven factors were considered. 

Nonetheless, only the land use, obtained in a vector format (.shp) could directly be used. On the contrary, 

the lithology map and its corresponding database were digitalized from the scanned cartography, and the 

remaining factors (elevation, aspect, slope and LiDAR intensity) were generated from the LiDAR raw 

data. 

 

Below, the landslide inventory and conditioning factors used in this work are described: 

 

- A landslide inventory generated for the island of Lipari, supporte by the interpretation of two 

sets of aerial photographs at a scale of 1:36,000 and taken in 1964 and 2005, was used. However, 

a comprehensive inventory for the island of Vulcano was not available. 

 

- The data acquired by the airborne LiDAR (Light Detection and Ranging) scanning technique and 

ALS (Aerial Laser Scanning), during a survey carried out in 2008 by the Italian Ministry for 

Environment, were used to generate additional variables. This ALS dataset consists of a dense 

Bpoint cloud^ recorded during a LiDAR survey, represented by a set of 3D coordinates (X, Y 

and Z). Another important parameter is the reflected intensity (I) of the laser beam (Marsella et 

al. 2015b). This parameter is a function of the distance to the object, the angle of incidence of the 

laser beam and the reflectance properties of the object (D’Aranno et al. 2015). The usefulness of 

this data source has been proven when performing vulnerability, susceptibility or hazard 

assessments (Abdulwahid and Pradhan 2017; Gorsevski et al. 2016) as various factors can be 

extracted from it. In addition to that, it is well known that water saturation is a very important 

variable as a conditioning and triggering factor, while the vegetation is a significant factor that 

controls the ground water infiltration and accumulation (Xiao et al. 2017). Applications of 

LiDAR intensity to differentiate the vertical layers of the vegetation can be found, despite its 

limitations. Other than its own measurement platform characteristics (altitude and incidence 

angle), the canopy structure is dispersed within the LiDAR footprint and its complex 

composition of elements with different sizes, orientations and reflectance values makes it 

difficult to associate the reflected intensity with the different types of plants (Morsdorf et al. 

2010; Jason and Bork 2007; Kim et al. 2009). Similarly, studies have been carried out to 

differentiate the land-cover objects. In this case, despite the fact that in practice, LiDAR intensity 
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is not easily correlated with the theoretical reflectance of materials, the relative reflectance 

allows for the separation of different classes of materials by filtering or normalizing the intensity 

values (Song et al. 2002). This paper is not intended to provide a detailed land use or vegetation 

classification via LiDAR intensity. Instead, a simple normalization and classification of LiDAR 

intensity values (in the range 0–1) was performed (Fig. 2). Thus, the higher intensity values have 

been assumed to correspond with less scattering materials like bare rock or artificial targets; in 

general, with well-defined planes and therefore with less scatter effects. They are also assumed 

to be more prone to mass movements. On the contrary, low-intensity classes will be assumed to 

be more correlated with vegetated areas with different species and densities, preventing in some 

proportion the water infiltration. In addition, the high-resolution LiDAR point cloud, with a 

mean spacing of 2 m, enabled the building of high-quality digital elevation models (DEMs) of 

both islands. From these DEMs, the elevation map, the aspect map and the slope map were 

generated (Fig. 2). Elevation is considered as an indirect expression of some environmental 

settings such as vegetation types and rainfall, while slope aspect is related to the illumination 

time and thus, to the soil moisture. Slope or slope angle will have a direct impact on the 

gravitational forces that favor the downwards movement and so, determine the equilibrium state 

of a landslide. 

 

- Another continuous variable was derived by computing the distances from steep terrain features 

that are common in volcanic areas. These are geological structures integrated to craters and 

collapse escarpments, whose higher traces were digitalized and distances to them from the lower 

terrain were computed and represented in a layer named distances to geological structures (Fig. 

3). These structures and their proximities are characterized by altered rocks as the meteoritic 

products of the high degassing rates (volcanic gases) and hydrothermal alteration. Furthermore, 

the hillside in the surroundings of these structures is of high to nearly vertical slopes, favoring 

the generation of different types of landslides, like debris flows, rock falls and toppling. 

Moreover, the high slopes favor the long runoff tracks of rock fragments. 

 

The land-use map (Fig. 3) provided by Sicily Regional Administration (Italy) was also included in this 

analysis which contains eight well defined classes. Land use may be related to deliberate water supply, 

slope changes and modification of the soil and regolith thickness, which can also affect the equilibrium 

state of the slope mass. 

 

The numerical factors derived from LiDAR data (LiDAR intensity, DEM, slope and aspect) and the 

distance to geological structures were subdivided into classes using the natural-breaks method (Jenks 

1967). However, to determine the effect of classification on the correlation between independent variables 

and the dependent variable (landslide occurrence), 9 different classifications were applied, using classes 

ranging from 2 to 10 for each of these continuous variables. 

 

Considering that the rheology properties of rock and soil layers will affect the strength of the slope mass, 

the lithology layer was also included in this study. As for the lack of geotechnical parameters to be 

mapped, spatial dedication was put in the lithology classification. Thus, two approaches were used to 

group the original units (each single polygon of the geodatabase) from the geological maps of Lipari and 

Vulcano (Tranne et al. 2002; De Astis et al. 2006). First, the minor units were grouped into major units 

through a heuristic classification based on expert criterion. This approach consisted of reviewing the 

different lithological units of the geological map and their common properties to group them into major 

units. To help carry out this classification, the descriptive characteristics defined by Protodyakonov 

(1962) for the estimation of the relative hardness of rock and soils were utilized. As a result, all the minor 

units were classified into 17 classes (numbered in Fig. 1 as follows): (1) altered lava dome, (2) altered 

lava flow, (3) altered pyroclastic unit, (4) clastogenic lava flow, (5) colluvial and alluvial deposit, (6) 

conglomerate, (7) dike, (8) lava dome, (9) lava flow, (10) lava flow with pyroclastic layers, (11) littoral 

deposit, (12) locally altered lava flow, (13) obsidian rich lava flow, (14) pumice rich pyroclastic rock, 

(15) pyroclastic rock, (16) urbanized area and (17) volcaniclastic deposit. On the contrary, the second 
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approach consisted of a semiquantitative classification of the lithological units based on data mining 

techniques was addressed in two major phases by using Statistica software (TIBCO 2017) (Fig. 4). After 

applying both methods, the impact of each classification on the final susceptibility assessment 

performance was compared. 

 

This approach was carried out in the following order: 

 

1. A text mining processing was used to prepare the data mining input. This process receives the 

lithological information stored in the database field of unit description. From this information, 

through text mining processing, linguistic terms are summarized and converted into quantitative 

variables. This technique is based on statistical natural language processing, and here it is only 

used to organize text for each case. The process is briefly described below, while a sound 

description of methods for processing unstructured (or textual) data can be found in Manning 

and Schütze (1999). Firstly, common terms like pronouns, adverbs and verbs are filtered by 

comparing the original text describing the lithological units with a text database. At the same 

time, the terms with the same root and synonyms are grouped together and then supervised to 

link those with the same meaning. Additionally, other synonyms are selected and grouped into a 

single term (e.g. layer and unit). At the end of this step, only the interesting terms remain (aa-

type, alternate, ashy, blocky, brecciated, coarse, coherent, detrital, etc.). Secondly, the program 

automatically searches and calculates the frequency for every variable or term that appears in 

each case (lithology polygon). As the purpose of this research is to group these variables 

describing lithological features into a lower dimensional space, it is only necessary to know 

whether these terms appear or not in each case. Therefore, the frequency values are substituted 

by 0 (if the frequency is 0) or 1 (if the frequency is different from 0). 

 

2. Once the categorical variables are converted into numerical values (0 and 1), the next phase 

consists of applying a SOM classifier for the unsupervised clustering of lithological units. All the 

ANN’s (artificial neural networks) are built with basic units called neural network processing 

units (henceforth, NPU). The simplest model of an artificial neuron or perceptron proposed by 

McCulloch and Pitts (1943) consists of a single NPU that attempts to simulate the behaviour of 

the biological neural network in a human brain (Nedjah and de Macedo Mourelle 2007). These 

NPUs receive incoming signals (data inputs) of a n-dimensional Euclidean space (Rn) 

represented by vectors of the type ai = (x1,x2,…,xn), and uses a function of these inputs, f(x), to 

generate the outputs or activity states. 

 

3.2 Classification methods 

 

In an artificial neuron, their synapses (connection with inputs or other neurons) are represented by 

weights (Wi = w1, w2, …,wn) with exciting (positive) or inhibitory (negative) values, all of which are 

applied to the input data. The total entry of a NPU is then calculated at the sum of its weighted inputs 

(Fig. 5a). A simple NPU can learn and map a linear function, but to accommodate some functions, for 

example when every input and its corresponding weight are 0 but the predicted output must be different 

from 0, a constant or “bias” is needed. Therefore, a biased weighted sum is used in this case (Eq. 1): 

 
 

In the following step, the biased weighted sum is analyzed using the activation function (or transfer 

function) of the neuron to decide its activation state: activated (1) or deactivated (0). The most popular 

activation function is the step (threshold) function, which results in 1 when the input sum is equal or 

greater than 0, or 0 in other cases. When more than one neuron is run in a neural network (NN), each 

NPU can learn or approach a segment of a non-linear function. A NN is defined by a topology formed by 

different neuron layers, with known weights and transfer functions for all NPU’s. However, both weights 
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and the bias parameter have to be iteratively adjusted during the training phase so that the input data is 

correctly mapped to one of the expected results. The most common training method is that which is based 

on a feed-forward network (or perceptron), where all the inputs are processed from one layer to the 

following layer without cycles or feedback loops that use outputs as new input in previous layers. 

 

In this research, a SOM (Kohonen 1998, 2001) also known as a self-organizing feature map (SFOM) is 

used. Thus, the Euclidea distance between two points (a, b) can be assessed through Eq. 2: 

 
 

SOM consists of two layers, one input layer and one output layer. The output layer is a competitive layer 

in which a single neuron (representative of a cluster or class) is activated for an input vector. This 

network is characterized by using unsupervised training for weight adjustment, so that each one can 

recognize or link an input vector with characteristic features without needing a training set. It also does 

not contain activation functions, as it only needs to determine which the winning neuron is to continue 

with the self-organizing process. 

 

The training algorithm consists of three principles: 

 

- Competition: the input vector is compared with every weight vector of each output neuron (j): Xi 

against Wj. The winning neuron is that with the closest Wj to the input Xi, in terms of Euclidean 

distance. 

- Cooperation: the winning neuron strengthens its neighbours in the output layer through a 

neighbourhood function (F). Usually, this neighbourhood function is a Gaussian function (Fig. 

5b, Eq. 3): 

 
- Adaptation: once an input Xi has been processed, all the weights (Wj) are adjusted to make them 

closer to the input. To recalculate weights, Eq. 4 is used: 

 
where α is the learning rate coefficient. FromEq. 4, it follows that the amount of change depends 

on the neighbourhood (h), i.e. the distances between the neighbouring neurons and the winning 

neuron. However, h decreases with time. 

 

The performance of unsupervised learning in clustering techniques can be evaluated by using the sum of 

squared errors (SSE) within clusters (Eq. 5): 

 
where k is the number of clusters, C the set of cases in a cluster and m the center point of a cluster. Thus, 

the lower the SSE, the lower the network error, which depends on the distances between each cluster 

object (p) and the cluster centre (mj). 

 

In addition to the adjusted weights, the topology is an important factor due to its performance as a 

SOMneural network (Ermini et al. 2005; Melchiorre et al. 2008). Accordingly, in this research, different 

topologies were tested so as to compare the clustering error. The SOM structure was iteratively changed 

by altering the number of the NPUs in the lattice of the output layer, as indicated in Table 1. 
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Finally, both nominal variables, land use and lithology, were converted to numerical classes (ordered 

integers) before being utilized in the GMM model. 

 

3.3 Susceptibility assessment 

 

This susceptibility assessment involves a modification of the GMM, which is based on a cross analysis of 

determinant factor maps and the spatial frequency of landslides. This method is not capable of predicting 

the susceptibility to slope movements with absolute probability; however, it enables the assessment of the 

potential relative instability in a broad region by using a series of classified factors. The GMM requires an 

inventory of landslides and the selection of the most significant determinant factors to be included in the 

analysis. In addition, to ensure the effectiveness of thismethod, the bivariate analysis of factor 

classifications, as well as the susceptibility map validation, plays an important role. Consequently, this 

method can be divided into three major phases (Fig. 4): contingency analysis, generation of the 

susceptibility matrix and susceptibility map validation. 

 

3.3.1 Contingency analysis 

 

After generating the multiple classifications of continuous factors through the natural breaks method and 

the two classifications of lithological units, a contingency analysis was carried out. The Pearson 

coefficient (C) was used as the measurement of the degree of association between conditioning factors 

and the landslide spatial distribution. It is a very common parameter used to assess the strength of 

association between independent and dependent variables (C = 0 indicates no dependence and C = 1 

indicates the maximum dependence). However, this parameter is related to the data independence, 

but it was also affected by sample size. This fact can prevent a pair of variables from reaching higher C 

values. Thus, the percentage of the adjusted C (%C/Cmax), based on the maximum C that can be reached, 

was also calculated here. 

 

3.3.2 GIS matrix method and validation 

 

When applying the GMM, three major stages are carried out: 

 

1. All the possible geographical intersections between determinant factor classes are obtained and 

the mobilized area (training landslide inventory) associated with each combination is calculated 

and saved in the landslide matrix (LM). 

2. The total area covered by each combination of factor classes is determined in the total surface 

matrix (TSM). 

3. The susceptibility matrix (SM) is calculated by dividing LM by TSM. This matrix contains the 

percentage of mobilized area linked to each factor class combination. 

 

The entire process for applying the GMM and the validation of the susceptibility map has been 

implemented in different cases, providing successful results (Irigaray 1995; Irigaray et al. 2007; Jiménez- 

erálvarez et al. 2011), and has been used in areas with an existing inventory. However, given that the only 

landslide inventory used here was that of the island of Lipari, two modifications were integrated within 

the three previous stages of the common GMM. 

 

i. First, the geographical intersection of factor classes that are common to both islands was 

calculated. With this step, a first vector file was generated from the factor class intersection, 

which was clipped to only contain the intersection corresponding to the Lipari area. This 

second file was used to calculate the LM, the TSM and the SM by using the Lipari landslide 

inventory. Similarly, the validation step was applied only to the analysis area of Lipari. 

ii. Once the different tests of the GMM with different conditioning factor combinations were 

validated and the best model selected, this model was applied again over the entire area 

covered by both islands (application area). 
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After applying the contingency analysis and selecting the best classifications of conditioning factors to be 

included in the susceptibility model, the intersection of factor classes was generated (step i), and the SM 

was calculated for the island of Lipari. However, to improve the performance of the GMM, multiple 

combinations of the conditioning factors were tested by omitting the factors with the lowest adjusted C. 

Each attempt was validated by using the degree of fit (DOF) (Eq. 6) as a measurement of the degree of  

association between the test inventory (30% of themapped landslides) and the landslide susceptibility 

map. Thus, the effectiveness of each susceptibility map was assessed by using a spatial autocorrelation 

analysis regarding the Goodchild equation (Goodchild 1986): 

 
Where 

- DOFi represents the percentage of mobilized area that matches each susceptibility class (i). 

- Zi represents the mobilized area in each susceptibility class. 

- Si represents the total area covered by each susceptibility class. 

 

After checking the validation results, certain errors can appear which are linked to the low and very low 

susceptibility classes (relative error), while DOF increases in the high or very high susceptibility classes 

(relative accuracy) (Fernández et al. 2003; Irigaray et al. 2007). 

 

The modified GMM was implemented using ArcGIS (ESRI 2018) by creating new tools that can be 

found in Palenzuela (2018) (Fig. 6). 

 

4. Results 

 

Prior to the susceptibility assessment, the results of the contingency analysis were reviewed. Table 2 

contains two cases linked to lithology, since both heuristic and semiquantitative techniques for lithology 

classification were compared. For unsupervised clustering, the input data was split at 70%. Therefore, 

70% of the dataset was used, first to train the NN, and then, the error (Eq. 5) was calculated for the test 

dataset. After plotting the SOM error, a relative minimum error is observed when running a topology of 

10 neurons (2 × 5) (Fig. 7). From this point, the error progressively decreases as the number of neuron 

increases. Nonetheless, by overfitting, this can lead to the increase in neural network noise, resulting in a 

loss of generalization capability (Melchiorre et al. 2008) as the number of neurons increases. Taking these 

aspects into account, the topology of 10 neurons (10 classes) was used for the purpose of comparison. 

Since the urbanized area class was well identified, it was directly added to the class set resulting from the 

unsupervised clustering, making a total of 11 classes. 

 

When comparing the adjusted C for both lithology classifications (Table 2), the highest value for the 

heuristic classification based on the estimated material strength was observed. In addition, by directly 

reviewing the automatic classification (SOM classification) of lithotypes, misclassifications were 

observed with regard to genesis and major characteristics that make each lithological unit clearly 

distinguishable. For instance, rocks (andesite, basalt, obsidian and other) and loose deposits (littoral, 

colluvial and alluvial) were joined together in some classes. Accordingly, the heuristic classification 

was included in the GMM model. However, it is worth noting that the unsupervised clustering based on 

text and data mining techniques showed the capacity to reduce the dimensionality (number of classes) by 

35.3% (11 classes against 17), while the adjusted C only decreased by 3.3% (13.1 against 9.8) (Table 3). 

 

For every continuous variable (LiDAR intensity, DEM, slope and aspect, distance to collapses and 

craters), the classification falls at the inflection point of the adjusted C, from which the trend becomes 

more pronounced (Fig. 8), was selected. 
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Finally, the classifications selected for all the conditioning factors were tabulated and ordered (Table 3) to 

take into account the importance of these variables for the susceptibility analysis. In general, the strength 

of the associations between explanatory factors and the landslide spatial distribution is low, giving the 

highest values for the variables of lithology, elevation and slope. 

 

The previous coefficient considers each separated factor. However, to evaluate the effectiveness of the 

susceptibility analysis, 14 tests of the GMM were performed and validated by using 14 combinations of 

the conditioning factors (Table 4). The first test (test 1) included all the factors. The second one omitted 

the factor with the lowest C. In the following tests of the GMM, pairs of factors were formed with one of 

the variables with the lowest contingency coefficient (LiDAR intensity and distances to collapses and 

craters), together with one of the remaining factors were progressively omitted. 

 

To compare the effectiveness of every combination, the degree of fit was calculated for every GMM test 

(Table 5). To better observe the separation between the area covered by the lowest susceptibility levels—

Very Low and Low—and the highest values—High and Very High—the difference between both pairs of 

values was assessed. When reviewing the validation results, the best match between the test inventory and 

the susceptibility classes was found in the second test, where only LiDAR intensity was omitted in the 

GMM model. The difference between the highest and lowest values for this test resulted in 62.49%. 

 

By selecting the input variables of the second test, the GMM was applied to the factor combinations 

common to both islands. Finally, the resulting values were reclassified into five susceptibility levels by 

using the natural-breaks method. These classes are “Very Low”, “Low”, “Moderate”, “High” and “Very 

High” and they express the susceptibility map of Fig. 9. 

 

5. Discussion and conclusions 

 

Susceptibility analysis is a very important component in landslide hazard assessment, and hence, a 

necessary element for the mitigation of risk to infrastructure and human lives. Accordingly, the major 

advancement of this paper is on the adaptation of the GMM to be applied to an area of terrain without a 

landslide inventory but with similar settings to those of another area with an existing inventory. This was 

not covered by previous models of the GMM, only being acceptable to be used in areas with an existing 

assignation of stable and unstable zones or a landslide inventory (e.g. Jiménez-Perálvarez et al. 2011; 

Irigaray et al. 2007). Thus, this adapted methodology enables the generation of a preliminary 

susceptibility zoning. This susceptibility assessment can be started from the only use of causative factors 

that are first combined in the analysis area (classified in stable and unstable zones) and then the 

susceptibility matrix (SM) is transferred to the application area (both areas with or without a landslide 

inventory). In this research, the area without a landslide inventory coincides with the entire expanse of 

Vulcano Island, while the analysis area was established for the island of Lipari sharing similar 

geomorphological and geological settings. 

 

In the field of susceptibility analysis, some works deal with the validation of more than one causative 

factor combination (e.g. Van Westen et al. 2003), which permits to select the data set with the most 

suitable factors that better explain the landslide susceptibility levels. Besides that, in this research, an 

analysis and comparison of the internal classification of the conditioning factors were also considered to 

improve the quality of the results. Thus, each quantitative variable was divided into a different number of 

classes and the contingency tables were then used to select the classification that best explains the 

independent variable (landslide susceptibility). Furthermore, a bimodal (heuristic and unsupervised) 

approach to classify lithology when no geotechnical parameters are directly known was applied, and the 

Pearson coefficient (C) was also used here to decide the best classification method. The heuristic 

classification depends on the order of lithologies based on their relative strength that is given in relation 

to their characteristics. This can lead to some subjective judgement and the number of classes will 

coincide with the number of lithologies that is registered in the existing cartography carried out by the 

expert. To try minimizing this subjectivity, an innovation in the classification process was introduced by 
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applying an advanced data mining methodology. This is done by combining text mining- and artificial 

neural network-based techniques; with the aim of the semiautomatic processing and clustering of 

categorical variables within a certain number of classes. The unsupervised training of a self-organizing 

map, the network topology, the wrong variables and noisy data are factors affecting network performance 

(Ermini et al. 2005). Thus, a text mining pre-process was performed for the selection of the most 

important terms (nominal variables) associated with the characteristics of the lithological units. In 

addition, nine topologies were tried, and the internal error of the clusters was examined to select a 

classification that maintains generalization and avoids noisy learning. After addressing the contingency 

analysis, the highest Pearson C and the misclassifications observed in the neural network classification 

were considered, so that the heuristic classification could be selected. Nonetheless, it is worth noting that 

the SOM network reduced the number of classes considerably by 35.3% and only decreased the adjusted 

Pearson coefficient by 3.3%. This case, in which a qualitative method relying on expert rules to give a 

better result, is consistent with previous works (Bourenane et al. 2015). However, it is known that 

unsupervised clustering is a very suitable technique for discovering data structures where previous classes 

are not defined (Melchiorre et al. 2008). Therefore, one cannot exclude that improvements in the 

classification can be made by adding other inputs (features of the objects to be classified) and datasets to 

the NN at the training stage. 

 

Similarly, to raise the objectivity, the GMM was modified and implemented in ArcGIS® to apply the 

trained matrix to an area lacking in a comprehensive landslide inventory. The modified GMM allowed for 

the generation of the susceptibility matrix for the island of Lipari (with an existing landslide inventory), 

and the application, such as the susceptibility matrix to the entire complex formed by both islands (Lipari 

and Vulcano). From the findings of this research, the modified GMM represents a useful contribution to 

identify spatial distribution of potential unstable areas without a landslide inventory. Nonetheless, before 

applying this methodology it must be assumed that landslides will occur under the same geological, 

geomorphological, hydrogeological and climatic conditions as in the past (Aleotti and Chowdhury 1999; 

Jiménez-Perálvarez et al. 2011). 

 

Despite a multi-classification approach being used for the conditioning variables, and up to 14 

combinations of these factors being tested, a more reliable and precise susceptibility mapping could be 

generated by incorporating additional improvements. Among them, an updated landslide inventory and 

different training and test datasets (Melchiorre et al. 2008) can be introduced into the model being 

validated. Finally, considering that the present method is based on a recursive process, improvements can 

be made by collecting additional factors and performing new tests of the GMM on their classifications. 

This is how the bivariate statistics (contingency analysis) and the validation of each GMM test can be 

applied to distinguish the factors that will best explain the landslide susceptibility levels. 
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List of tables: 

 

Table 1. SOM topology. N is the number of NPU’s, H is the height of the lattice and W the width of the 

lattice. 

 

Table 2. Adjusted Pearson coefficient (C) for both lithology classifications. 

 

Table 3. Contingence coefficient Pearson (C). Distance to C.C. expresses the factor distance to collapses 

and craters. 

Table 4. Factor combination used in every try of the GMM. 

 

Table 5. Resulting values for the degree of fit (DOF) for every try of the GMM. 
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List of figures: 

 

Figure 1. Localization of the study area and heuristic lithology classification of Lipari and Vulcano—(1) 

altered lava dome, (2) altered lava flow, (3) altered pyroclastic unit, (4) clastogenic lava flow, (5) 

colluvial and alluvial deposit, (6) conglomerate, (7) dike, (8) lava dome, (9) lava flow, (10) lava flow with 

pyroclastic layers, (11) littoral deposit, (12) locally altered lava flow, (13) obsidian rich lava flow, (14) 

pumice rich pyroclastic rock, (15) pyroclastic rock, (16) urbanized area and (17) volcaniclastic deposit. 

Major geological structures are also represented: collapses (dashed line) and craters (solid line). 

 

Figure 2. Conditioning factors: elevation, aspect, slope and LiDAR intensity. 

 

Figure 3. Conditioning factors: distance to geological structures and land use. For the land use, the 

numbered scale represents the soil types of the study area as follows: transitional areas (1); industrial and 

infrastructural areas (2); transitional areas, open spaces with little or no vegetation (3); arable land (4); 

heterogeneous agricultural areas (5); f.orests (6); shrub and/or herbaceous vegetation associations (7); 

open spaces with little or no vegetation (8). 

 

Figure 4. Diagram of the process to classify lithological units through data mining techniques. 

 

Figure 5. a) The NPU structure showing its inputs, outputs and operations. b) Gaussian function 

representing the neighbourhood function (F) that applies to the output of an NPU. 

 

Figure 6. Flow chart of the process to apply and check the GMM—modified from Irigaray et al. (2007). 

 

Figure 7. Self-organizing map (SOM) error. 

 

Figure 8. Adjusted Pearson coefficient (C) with ascending trend. 

 

Figure 9. Landslide susceptibility map. 
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