527 research outputs found

    Nab-paclitaxel for the management of triple-negative metastatic breast cancer: a case study

    Get PDF
    The optimal sequence of systemic chemotherapy in metastatic breast cancer (MBC) is unknown. We report the case of a woman who was successfully treated with nanoparticle albumin-bound (nab)-paclitaxel for triple negative MBC in our institution. In November 2008, a 48-year-old woman underwent surgical treatment for a triple negative invasive ductal breast cancer and subsequently received adjuvant chemotherapy with fluorouracil/epirubicin/cyclophosphamide and radiotherapy. Sixteen months after surgery, she presented with a left chest wall metastatasis. The patient received combination therapy with conventional paclitaxel (90 mg/m² weekly for 3 out of 4 weeks [QW 3/4]) and bevacizumab (10 mg/kg every 2 weeks [Q2W]) as first-line treatment for MBC (six cycles; March to September 2010) and achieved a partial response at the metastatic site. Bevacizumab monotherapy was continued until disease progression (April 2011) with the development of a single infraclavicular lymph node metastasis and an increase in the dimensions of the left chest wall lesion. From May to December 2011, the patient received nab-paclitaxel 260 mg/m² every 3 weeks (Q3W) as second-line treatment (11 cycles). After three cycles, the left chest wall lesion and the infraclavicular lymph node metastasis were undetectable and the patient was considered to have achieved a complete response. Treatment was well tolerated with no significant toxicity or need for dose reduction. Given our case, here we review the clinical evidence and discuss the potential role of nab-paclitaxel for the treatment of triple negative MBC, a subgroup typically characterized as having aggressive disease and limited treatment options

    Exploring the membrane-based separation of CO2/CO mixtures for CO2 capture and utilisation processes: Challenges and opportunities

    Get PDF
    The separation and removal of CO2 from its mixtures with CO2 is gaining increasing interest due to the novel processes in which these two gases are mixed, such as the non-thermal plasma activated reaction of CO2 splitting, a promising CO2 utilisation route that could be performed using renewable energy. The aim of this review is to propose a novel database suitable for membrane scientists to evaluate the feasibility of membrane-based separation processes involving such gas mixture, not included in the original Robeson’s works on the upper bound, nor in later developments. For this reason, we reviewed the data on the permeation, diffusion and sorption of these two gases in different classes of polymers, from polyolefins to polyimides and green polymers, spanning over a wide range of permeability values. Furthermore, we propose an upper bound for this separation, and provide a theoretical explanation for it. The separation mechanism is solubility-driven, and all polymeric membranes inspected in the literature show a CO2-selective behaviour, despite a very limited, or unfavourable, diffusion selectivity for CO2, which is consistent with empirical correlations. Consequently, the observed selectivity values are determined by the solubility-selectivity and are comprised mainly in the range 7–20, in agreement with known empirical correlations between the solubility and the critical temperature of the penetrants. Temperature has a detrimental effect onCO2/CO selectivity, as the activation energy for permeation of CO2 is always lower than that of CO. In general, while the permeability can vary over several orders of magnitude depending on the polymer nature, selectivity mostly ranges between 7 and 20, which makes the trade-off mechanism between permeability and selectivity rather weak in the case of this mixture. Such an effect provides a wider variety of design choices, and makes this separation attractive for polymeric membranes, if carried out at low temperatures and with CO2-philic materials. A preliminary calculation of the separation obtainable with single-stage membrane unit for a binary mixture is carried out for some representative polymers

    Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review

    Get PDF
    Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this review, inspired by his rigorous and original approach to representing membrane fundamentals, we provide an overview of the most significant and up-to-date modeling tools available to estimate the main properties governing polymeric membranes in fluid separation, namely solubility and diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are most relevant or that show the potential to be relevant in the future. We do not restrict our view to the field of macroscopic modelling, which was the main playground of professor Sarti, but also devote our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical evaluation of the different approaches considered, along with their limitations and potentiality

    Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review

    Get PDF
    Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this review, inspired by his rigorous and original approach to representing membrane fundamentals, we provide an overview of the most significant and up-to-date modeling tools available to estimate the main properties governing polymeric membranes in fluid separation, namely solubility and diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are most relevant or that show the potential to be relevant in the future. We do not restrict our view to the field of macroscopic modelling, which was the main playground of professor Sarti, but also devote our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical evaluation of the different approaches considered, along with their limitations and potentiality

    Modelling water sorption in Facilitated Transport Membranes with PC-SAFT Equation of State: the case of Polyvinyl amine

    Get PDF
    Facilitated transport membranes have great potential for carbon dioxide removal. By coupling the solution diffusion mechanism and the facilitation effect of the chemical reaction, CO2 transport in such systems is substantially higher compared to other gases, like nitrogen and methane. The presence of water is needed in the membrane to activate the reaction mechanism, and affects the sorption and diffusion of all the gases in the membrane. The present work focuses on the modelling of water sorption in purified Lupamin\uae (polyvinylamine (PVAm)), with the PC-SAFT Equation of State (EoS) (Gross and Sadowski, 2001). The work is aimed at finding the best parameters and association schemes to model the water sorption in PVAm with the PC-SAFT model, in order to use it to model more complex situations such as the multicomponent sorption in the system

    CO2 sorption modelling in humidified Polyvinyl amine (PVAm) with PC-SAFT

    Get PDF
    Carbon dioxide emissions represent one of the main environmental issue of our time. The greenhouse gases atmospheric loading, due to anthropogenic activities, are causing a continue rise of global temperature. In the field of CO2 capture from gas streams, membrane technologies are promising alternative to the more common operations. Among these, Facilitated Transport Membranes show high performances in terms of CO2 permeabilities and selectivities even at low pressures by coupling a simple solution diffusion transport mechanism and a reversible chemical reaction with a carrier agent. Polyvinyl amine (PVAm) binds one primary amino group for each monomer along the chain, showing high hydrophilicity and affinity to CO2. In this work we use the PC-SAFT [1] Equation of State to model the H2O uptake and the solubility of CO2 in the ternary system of PVAm / H2O / CO2

    Quaterpyridine Ligands for Panchromatic Ru(II) Dye Sensitizers

    Get PDF
    A new general synthetic access to carboxylated quaterpyridines (qpy), of interest as ligands for panchromatic dyesensitized solar cell organometallic sensitizers, is presented. The strategic step is a Suzuki−Miyaura cross-coupling reaction, which has allowed the preparation of a number of representative unsubstituted and alkyl and (hetero)aromatic substituted qpys. To bypass the poor inherent stability of 2-pyridylboronic acid derivatives, we successfully applied N-methyliminodiacetic acid (MIDA) boronates as key reagents, obtaining the qpy ligands in good yields up to (quasi)gram quantities. The structural, spectroscopic (NMR and UV−vis), electrochemical, and electronic characteristics of the qpy have been experimentally and computationally (DFT) investigated. The easy access to the bis-thiocyanato Ru(II) complex of the parent species of the qpy series, through an efficient route which bypasses the use of Sephadex column chromatography, is shown. The bis-thiocyanato Ru(II) complex has been spectroscopically (NMR and UV−vis), electrochemically, and computationally investigated, relating its properties to those of previously reported Ru(II)−qpy complexes.“This document is the Accepted Manuscript version of a Published Work that appeared in final form in [The Journal of Organic Chemistry], copyright © American Chemical Society after peer review and technical editing by the publisher
    • …
    corecore