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Simple lattice model explains equilibrium separation phenomena in glassy polymers

Tianmu Yuan,1, ∗ Maria Grazia De Angelis,2 and Lev Sarkisov1

1Department of Chemical Engineering, the University of Manchester
2Institute for Materials and Processes, School of Engineering, the University of Edinburgh

The Robeson bound is a theoretical limit that applies to kinetics-driven membrane separations of
gas mixtures. However, this bound does not apply to sorption-driven membrane processes such as
CO2/N2 separation, which lacks a theoretical explanation. As a result, we are uncertain about the
factors that control the limiting behavior of sorption-driven separations. To address this issue, we
employed a simple lattice model and dynamic mean field theory to examine the transport properties
of disordered model structures, isolating sorption effects from purely kinetic effects. Our findings
indicate that transport effects play a crucial role in sorption-driven processes, and perm-selectivity is
consistently lower than sorption selectivity, which is an unattainable limit. We used basic geometric
fragments of the structure to explain how transport effects emerge and manifest themselves in
sorption-driven processes.

I. INTRODUCTION

Membrane technologies for gas separations are consid-
ered to be an energy efficient alternative to the traditional
absorption processes. [1, 2] Membranes can be broadly
classified into two categories based on the material:
organic (polymer) membranes and inorganic/metallic
membranes. Recently, new classes of membranes have
emerged based on graphene materials[3, 4] and Metal-
Organic Frameworks[5]. Polymeric membranes are still
the most widely used type of membrane for industrial gas
separation compared to inorganic membranes such as ze-
olite, ceramic, metallic, and carbon-based membranes,
due to their favorable combination of cost-effectiveness,
good mechanical and chemical stabilities, and excel-
lent separation performance.[6, 7] The separation per-
formance of a membrane process is governed by two key
characteristics of the polymer material: permeability and
perm-selectivity. These characteristics are, however, in
competition with each other: polymers with high per-
meability do not exhibit high selectivity and vice versa.
Robeson clearly demonstrated this trade-off by compil-
ing a large amount of data for the performance of var-
ious polymer materials and different gas couples and
by plotting perm-selectivity as a function of permeabil-
ity on log–log scale [8, 9]. Moreover, generalizing these
trends, Robeson noted that the trade-off between perm-
selectivity and permeability must lead to a practical lim-
itation (now known as the Robeson bound) to the perfor-
mance of polymer materials in separation of a particular
gas pair. [8, 9] This empirical observation played an im-
portant role in assessing the economic potential of the
membrane separation processes and in guiding various
strategies to modify polymer materials. For example, a
strategy where properties of two materials (polymer and
filler) are combined in order to overcome the Robeson
limit led to the development of the mixed matrix mem-
branes [10, 11].
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FIG. 1. CO2/N2 perm-selectivity as a function of (a) CO2

permeability [12–31] and (b) sorption selectivity for various
glassy polymer membranes[22–31]. In panel (a), the red,
blue, and yellow lines are the upper bounds from Robeson
[9], Comesaña-Gándara et al. [21], and Freeman [32], respec-
tively. The black line is a hypothetical upper bound based on
the highest selectivity available where the purple line is the
selectivity calculated from Eq. 4. The black triangles in panel
(a) highlight membranes based on PIMs. In panel (b), results
from experiments and simulations are shown as red triangles
and blue circles, respectively.

Several theoretical justifications for the Robeson
bound have been proposed. [20, 32–35] In the notable
contribution by Freeman [32], the starting point is the
solution-diffusion theory, which considers permeability as
a product of of solubility S and diffusivity D:

k = SD (1)

The perm-selectivity for species A and B, αA/B = kA

kB
,

can be then divided into two contributing factors: sorp-
tion selectivity (SA

SB
) and diffusion selectivity (DA

DB
). De-

pending on which contribution dominates the process, we
can distinguish sorption-driven or kinetics-driven sepa-
ration. [36] Colloquially speaking, sorption-driven sep-
aration exploits different levels of affinity of the com-
ponents of the mixture towards the polymer material.
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Higher concentration of the stronger binding component
in the membrane should lead to a higher flux of this
component across the membrane, and, hence, the perme-
ate stream should be enriched in this component. Con-
versely, kinetics-driven separation can be thought of as
a sieving mechanism that discriminates between species
based on their molecular size and the resulting free en-
ergy barriers to cross narrow windows in the polymer
structure. In the kinetics-driven separations, the perme-
ate product should be enriched in the component with a
smaller molecular size. This component is also expected
to have weaker interactions with the polymer material
compared to the component with larger molecular size.

Freeman’s theory views separation in membranes as a
predominantly kinetics-driven process, with the diffusion
selectivity expressed as a function of the kinetic diameter
(d) of the gas molecules:

ln

(
DA

DB

)
=

(
1− a

RT

)
c(d2B − d2A) (2)

where a and c are constants, R and T are gas constant
and temperature, respectively. This approach is expected
to work well for gas pairs such as H2/CH4 or He/N2, with
a significant difference in molecular size between the two
species. [32]

However, a very important case of CO2 and N2 separa-
tion for carbon capture applications cannot be described
by this theory. A compilation of data for CO2/N2 sepa-
ration for glassy polymers on a Robeson plot is shown in
Fig. 1a. On the same figure, we also show two empirical
upper bounds (red and blue lines) drawn based on the
experimental results [9, 21], as well as a theoretical pre-
diction based on Freeman’s work (yellow line) [32]. From
this, we can say that it is difficult to discern a well de-
fined boundary similar to other pairs of gases. In fact, as
shown in Fig. 1a, several possible boundaries could be
drawn, possibly controlled by very different mechanisms.

Let us briefly summarize what is known about CO2/N2

separation and how it is different from the kinetics-driven
processes. Firstly, CO2 and N2 have relatively similar
kinetic diameters (dCO2 = 0.33 nm and dN2 = 0.364
nm, respectively) and the arguments in the foundation
of the kinetics-based theories play a diminished role here.
However, transport effects do play an important role in
CO2/N2 separation. This is easy to show by naively as-

suming that
DCO2

DN2
≈ 1, leading to

αCO2/N2
=
kCO2

kN2
≈ SCO2

SN2

(3)

The result above is also an outcome of the Freeman’s
theory if one assumes dCO2

= dN2
. If the Eq. 3 were true,

it would give us a useful insight on the limiting behavior
of the polymer materials. For example, in the limiting
case of infinite dilution, the solubility (S0) is dominated

by the gas condensability, usually associated with its crit-
ical temperature (TC), and the sorption selectivity can
then be expressed as: [37, 38]

S0,CO2

S0,N2

≈ exp

[
b0(Tc,CO2

− Tc,N2
)

]
(4)

where b0 is a constant usually taken as 0.017 K−1. This
brings the selectivity to an approximate value of 20.6 for
CO2/N2 separation [37, 38] and this boundary is also
indicated in Fig. 1a by the purple line.
However, the Eq. 3 is generally not valid. Fig. 1b com-

piles data for polymers for which data for αCO2/N2
and

SCO2

SN2
is available. While Eq. 3 applies to several poly-

mers, there are groups of materials with both αCO2/N2
>

SCO2

SN2
and αCO2/N2

<
SCO2

SN2
deviations from the parity

plot, clearly indicating the importance of transport ef-
fects.
Secondly, unlike H2/CH4 or He/N2 separations where

the product is the weakly adsorbing component, in
CO2/N2 separation, we are interested in the strongly ad-
sorbing component, CO2. The concentration of CO2 will
be higher in the membrane than that of N2, contributing
to the flux, and this has been considered as the primary
driver for separation.
Another possible angle of analysis stems from some

similarities between high porosity glassy polymers such
as polymers of intrinsic microporosity (PIMs) and crys-
talline porous materials such as zeolites and Metal Or-
ganic Frameworks (MOFs). PIMs have been considered
as promising membrane materials for CO2/N2 separa-
tion. [21] Here, the structure consists of rigid units form-
ing connected porous spaces. They can be seen as an
amorphous counterpart to crystalline MOFs. From the
theoretical considerations, nanoporous materials, such as
zeolites and MOFs, should behave very differently from
the dense polymers, and in fact for zeolites it has been
shown that the overall selectivity increases with perme-
ability - which is the opposite trend to the Robeson
boundary as shown in Fig. 1a. [39]
Based on these considerations, it appears that a com-

prehensive theoretical framework for adequately explain-
ing sorption-driven separation in glassy polymers, analo-
gous in terms of the level of theoretical rigour and insight
to the Freeman’s theory for kinetics-driven separation, is
currently lacking. Without a clear understanding of the
factors that determine the theoretical limits of sorption-
driven separation, it is not feasible to rationally design
new polymer materials.
In principle, this understanding could be formed us-

ing molecular simulations. [40] In particular, adsorption
behavior in models of polymers with permanent poros-
ity can be obtained using Grand Canonical Monte Carlo
(GCMC) approaches. Self-diffusion coefficients are rou-
tinely obtained using molecular dynamics. [41] Non-
equilibrium simulations of transport across a model mem-
brane driven by the gradient of chemical potential can be
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used to directly obtain permeability of species either as
single components or mixtures. Therefore, theoretically,
it is possible to calculate independently all the terms in
Eq. 1 and explore transport properties of the membrane
as a function of various parameters. However, this is not
the common practice due to the enormous computational
cost associated with the direct simulation of permeation
across a model membrane in fully atomistic molecular
simulations. [42, 43] As a result, a typical molecular
simulation study obtains sorption properties (e.g. sol-
ubility coefficient) and self-diffusion coefficient, and uses
them to derive all other properties of the membrane (per-
meability, perm-selectivity). In experiments, typically k
and S are obtained from independent measurements, and
D is derived using the solution-diffusion relation. [44]
Another common practice is to measure k and D from
the time-lag method and calculate S using the solution–
diffusion model. [45, 46] Not surprisingly, this leads to
different predictions from the molecular simulations and
experiments. In particular, as shown in Fig. 1b, molec-
ular simulations consistently predict lower self-diffusion
coefficient values for CO2 compared to N2. Transport
diffusion coefficients from the experiments, on the other
hand, derived from S and k, show similar values for CO2

and N2, and sometimes even higher transport diffusion
rates for CO2 [22–31]. This results in molecular simu-

lations typically predicting αCO2/N2
<

SCO2

SN2
, whereas in

experiments the picture is more complex, as seen from
Fig. 1b.

The factors discussed above have inspired the present
study. Our goal is to create a simple theoretical method
and a model to calculate the permeability of model mem-
branes with complex geometries. We aim to estab-
lish a connection between the permeability and perm-
selectivity of the model with the topology of its structure
and the interactions between the guest species and the
host matrix.

For this, we employ a lattice model of the system
coupled with the dynamic mean field theory (DMFT).
[47, 48] The detailed description of the theory and the
model is provided in the Methods section. Briefly, in the
lattice model, the system of interest consists of discrete
lattice sites. Each site can be occupied either by a fluid
particle, a solid particle representing adsorbent or mem-
brane material, or be empty. Only nearest-neighbour site
interactions are considered. The mean field theory re-
places the actual occupancy of the sites with the aver-
age density and provides an analytical solution to the
fluid density at a given chemical potential or bulk pres-
sure. Transport on the lattice sites can be viewed as
hopping of particles from one site to another. In the
dynamic version of the mean field theory, transport of
the particles is replaced with density current between
the sites which again can be solved analytically in the
presence of external gradients of pressure, concentration,
or chemical potential. The DMFT is a qualitative theo-
retical framework which has been applied extensively in
the field of adsorption, capillary condensation, and dif-

fusion in porous materials. [47–68] Previously, we have
demonstrated the applicability of the DMFT to study
single-component fluid transport under non-equilibrium
conditions by comparing the results from the DMFT to
the molecular dynamic simulations using simple slit pore
geometries[69]. In a consequent study, we applied this
theory to describe transport in more complex heteroge-
neous media. [70] It is important to note that the lan-
guage of the lattice model is very general and not lim-
ited to representing polymer materials. The main rea-
son for focusing on polymer membranes in this study is
the abundance of experimental data available for these
materials, including generalizations represented by the
Robeson plot, and their wide use in industry.
Herein, we extend our previous work by using the two-

component DMFT to study fluid separation phenomena
in lattice models of polymers. Theoretical and simulation
studies in general allow us to decouple complex physi-
cal phenomena by creating appropriate hypothetical sys-
tems. In particular, in this work, the underlying param-
eter that describes the frequency of particle hops from
one lattice site to another takes the same value for both
species of the binary mixture. This makes it possible
to investigate sorption, transport, and separation behav-
ior emerging solely from the interaction of the particles
with the polymer structure and from the topology of this
structure. Using this approach, the solubility, permeabil-
ity, and selectivity trends as a function of polymer ma-
trix density and solid–fluid interactions are investigated
for single-component systems and binary mixtures. We
visualize the flux and local perm-selectivity for polymers
to explain the separation mechanism within complex ge-
ometries. Finally, we link our observations to the experi-
mental results to enhance our understanding of sorption-
driven separation mechanisms in membranes.

II. METHODS

A. Mean field theory

The theoretical framework applied in the work closely
follows the work by Edison and Monson [47, 48], and
we refer the readers to the original article for additional
details.

1. Static mean field theory

We start by considering a simple cubic lattice system
with nearest neighbour interactions under an external
field ψ. An example of a 4×4 system is illustrated by
Fig. 2, where its sites are labelled between 1–16. Each
site can be occupied by either a fluid particle (gray), a
solid particle (red), or being empty. Pair-wise interac-
tions between site 3 and 7, 7 and 11 are included as we
only consider nearest neighbour interactions. Therefore,



4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Solid lattice site: occupied 
by a solid particle

Fluid lattice site: occupied 
by a fluid particle

FIG. 2. An example of a 4×4 cubic lattice system, red and
gray spheres are solid and fluid particles, respectively.

the Hamiltonian for a two-component system with fluid
species A and B in an external field ψ can be written as

H = −1

2

∑
i

∑
j

∑
a

∑
b

ϵabn
a
i n

b
j +

∑
i

∑
j

nai ψ
a
i (5)

where a and b denote the fluid species and can be either
A and B, ϵab describes the interaction between fluid a
and b. The fluid occupancy for site i is denoted as ni
which can be either 0 (unoccupied) and 1 (occupied), j
represents the nearest neighbour of site i (j ̸= i). The
external field at site i, ψi, can be expressed as

ψa
i = −ϵsa

∑
j

(1− ηaj ) (6)

where ϵsa describes the solid–fluid interaction between
solid s and fluid a, and ηj is the solid occupancy at site
j. The value for η can be either 0 (occupied) or 1 (unoc-
cupied).

The mean field treatment leads to the following expres-
sion for the Hamiltonian

HMF =
1

2

∑
i

∑
j

∑
a

∑
b

ϵabρ
a
i ρ

b
j−

∑
i

∑
a

nai

(∑
j

∑
b

ϵabρ
b
j − ψa

i

) (7)

where ρ = ⟨n⟩ is the dimensionless average occupancy or
the density. The grand potential of the system can then
be written as

Ω = −1

2

∑
i

∑
j

∑
a

∑
b

ϵabρ
a
i ρ

b
j +

∑
i

∑
a

ρai (ψ
a
i − µa

i )+

kBT
∑
i

[∑
a

(ρai ln ρ
a
i ) + (1−

∑
a

ρai ) ln(1−
∑
a

ρai )

]
(8)

where µ is the chemical potential and kB is the Boltz-
mann constant. The minimization of the grand potential
with respect to density gives the density distribution at
equilibrium,

kBT

[
ln ρai − ln (1−

∑
b

ρbi )

]
−∑

j

∑
b

ϵabρ
b
j + ψa

i − µa
i = 0 ∀a, i

(9)

The above equation can be solved iteratively for a den-
sity distribution at fixed chemical potentials for the in-
dividual species at a given temperature.

2. Dynamic mean field theory

The dynamic behavior of the system closely follows the
work by Gouyet et al. [71] and Monson et al. [48]. The
readers are referred to the original articles for additional
details.

We start by expressing the change in density at site i
with respect to time,

δρai
δt

= −
∑
j

Ja
i,j (10)

where Ja
i,j is the flux of species a from site i to its nearest

neighbour j. Considering the Kawasaki dynamics which
generates dynamics via nearest neighbour hopping pro-
cesses, the flux from site i to its nearest neighbour j can
be formulated as

Ja
i,j = ωa

i,jρ
a
i (1−

∑
b

ρbj)− ωa
j,iρ

a
j (1−

∑
b

ρbi ) (11)

where ωa
i,j is the transition probability of hopping for

species a from site i to j based on the Metropolis criteria.
This can be expressed as

ωa
i,j = ωa

0 exp

(−Ea
i,j

kBT

)
(12)

where

Ea
i,j =

{
0, Ea

j < Ea
i

Ea
j − Ea

i , Ea
j ≥ Ea

i

(13)
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Inlet Control Volume
T∗ = 1.52

𝜌) = 3.9×10./
𝜌0 = 2.21×10.1

Outlet Control Volume
Vacuum

2σ 2σMembrane

x

z

FIG. 3. A schematic diagram of the non-equilibrium set up.
The inlet and outlet control volumes are place on the left and
right side of the membrane, respectively. The term σ is the
unit length of the lattice and the control volumes are made
of two layers of lattice sites.

and

Ea
i = −

∑
j

∑
b

ϵabρ
b
j + ψa

i (14)

In the case of a steady state condition
δρa

i

δt = 0, the
flux can be rewritten as

Ja
i,j = ωa

i,jρ
a
i (1−

∑
b

ρbj)

[
1− exp

(
µa
j − µa

i

kBT

)]
(15)

Both Eq. 11 and 15 can be used to solve the dynamics
transport behavior of the system. Throughout this work,
unless otherwise specified, Eq. 11 will be used.

B. Model details

To study the membrane separation processes based on
pressure/chemical potential gradient, we setup an non-
equilibrium condition by placing two control volumes on
either side of the membrane. A schematic diagram is
shown in Fig. 3. Although the theoretical framework
employed here is qualitative in nature, we aimed to cor-
relate the conditions of actual carbon capture from power
plant flue gas with the phase diagram of the lattice gas.
Specifically, we set the inlet condition of the membrane
to match the output from a coal power plant. For sim-
plicity, we assume an inlet stream consisting of 15% car-
bon dioxide (referred to as component A) and 85% ni-
trogen (B), at a pressure of 1 bar and a temperature of
308.15 K. In the lattice model, this corresponds to an
inlet with ρ∗A = 3.9 × 10−4 and ρ∗B = 2.21 × 10−3. The
chemical potential for each components are µ∗

A = −11.94
and µ∗

B = −9.30. The outlet condition is set to vac-
uum ρ∗A = ρ∗B = 0. Furthermore, taking into account
the mean field prediction for the critical temperature of
a simple cubic lattice, T ∗

crit = 1.5, we scale the system’s
temperature relative to the critical temperature to match

the temperature ratio of the flue gas to the critical tem-
perature of carbon dioxide, T ∗ = 308.15

Tcrit,CO2
∗ T ∗

crit ≈ 1.52

and the timescale ω0 is set to 0.2 throughout the study.
In the preliminary studies on the sensitivity of the

model to the initial conditions, we noted that permeabil-
ity and perm-selectivity depend on the pressure of the
gas mixture, its temperature, and composition. In this
article, the conditions considered correspond to a spe-
cific scenario of carbon capture from flue gas. Focusing
on this one specific condition allows us to explore the in-
fluence of the matrix density, decoupling it from all other
factors and isolating the role of pore morphology in the
transport phenomena.
The interaction strength is scaled with respect to the

carbon dioxide self interaction strength, hence, ϵAA =
1. The self interaction for nitrogen is scaled accord-

ing to the critical temperature ϵBB

ϵAA
=

Tc,N2

Tc,CO2
, therefore,

ϵBB = 0.415. The interaction between fluid A and B,
ϵAB =

√
ϵAAϵBB = 0.644. The interactions between fluid

and solid are listed in Table I. All the polymer systems
have system sizes of 200×50 lattice spaces. If we take
the diameter of CO2 as the base unit, this corresponds
to ≈66nm thick which falls in the range of thin-film mem-
branes.

III. RESULTS AND DISCUSSION

In this work, the structure of glassy polymers is repre-
sented as a random distribution of lattice sites. We refer
to each particular realization of this structure as a ma-
trix. While conceptually simple, this approach captures
several essential features of a glassy polymer, such as the
rigidity of the structure and its amorphous, disordered
nature. The key property of this structure is the volume
fraction of solid lattice sites, ϕs. The fraction ϕs is varied
between 0 (empty) and 0.40. At the highest value of ϕs,
the volume fraction of the remaining empty space (0.60)
corresponds approximately to the percolation threshold
for square lattice systems. All the properties of interest
are averaged over three independent realizations of the
polymer matrix with a particular value of ϕs.
Although the lattice model is cubic in nature, the third

dimension is extended using the periodic boundary condi-
tions, making the systems essentially 2D square lattices
when considering the percolation threshold. We would
like to note that this simple 2D lattice model does not
capture the atomistic details of the polymer and cannot
reproduce precise values of polymer properties such as

TABLE I. Solid–fluid interaction strengths for different poly-
mers.

C1 C2 C3

ϵsA 5.3 1.7 5.3
ϵsB 3.413 1.095 0.623
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porosity and fractional free volume (FFV). Instead, we
view this model as a qualitative tool for exploring the re-
lationships between porosity, solid–fluid interaction, and
permeation patterns. This approach allows us to inves-
tigate the influence of these variables on transport phe-
nomena and decouple this influence from other factors.

We consider the adsorption and diffusion of two gas
species, A and B. While the presented theoretical model
is qualitative and all the results are presented in arbitrary
dimensionless units, several parameters associated with
these two species are guided by the underlying problem
of CO2 and N2 separation. Species A represents CO2 and
all interactions in the system are considered in units of
fluid–fluid interactions for species A. The ratio of fluid–
fluid interactions for species A and B is equal to the
ratio of CO2 and N2 critical points. The model then ef-
fectively has only two free parameters: the strength of
solid–fluid interactions and the volume fraction of the
solid lattice sites, ϕs. To represent membranes with dif-
ferent polymer–fluid interactions, three combinations of
solid–fluid interaction strengths are considered. In par-
ticular, in C1 case both fluids interact strongly with the
polymer; in C2 case both fluids interact weakly with the
polymer; and in C3 case fluid A interacts strongly with
the polymer, while B is weakly interacting. The actual
values of the parameter ϵsf describing solid–fluid inter-
actions for species f are a result of some preliminary
experimentation with the model and are somewhat arbi-
trary. However, what is more important is the range of
adsorption and transport scenarios emerging as a result
of different interaction models.

Starting with C1, ϵsA is set to 5.3 in dimensionless
units, whereas ϵsB is scaled to maintain the ratio ϵsA

ϵsB
=

ϵAA

ϵBB
. In C2, ϵsA and ϵsB are scaled down by factor of 3

based on C1. In case of C3, ϵsA is the same as in C1, but
ϵsB is 5.5 times lower compared to the same parameter
in C1 to create a case with a particularly strong sorption
selectivity of the system towards A, representing CO2

(Table I).
We employ the static version of the mean-field the-

ory to obtain adsorption behavior and solubility coeffi-
cients in model polymer matrices. To obtain permeability
across the membrane, we employ the dynamic mean-field
theory, as described in the Methods section.

We start with the equilibrium sorption calculations
from static mean field theory (SMFT). The solubility (S)
is obtained using the following equation,

S =
1
N

∑N
i=1 ρi

p
(16)

whereN , p, and ρi are the total number of sites, pressure,
and density on site i, respectively. The calculated sorp-
tion selectivity is shown in Fig. 4a–4c. In this figure, the
ideal results are obtained from pure component calcula-
tions and are compared with the results obtained for ad-
sorption from binary mixtures under the same conditions
as in the source control volume in the DMFT studies.
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FIG. 4. Sorp- (a–c) and perm- (d–f) selectivity as a function
of the fraction of solid lattice sites in the matrix ϕs for C1–C3

interaction cases, respectively. Red and blue lines show the
results obtained from single component isotherms and from
binary mixtures, respectively. The error bars are the standard
deviations.

This data is complemented by the adsorption isotherms
for single components and binary mixtures, presented in
the Supplementary Material file. The isotherms, as de-
picted in the graphs, show linearity for weakly adsorbing
species and in low density matrices, corresponding to the
Henry’s law regime. With increasing solid-fluid interac-
tions and/or matrix density, the isotherms transition to-
wards a shape resembling the Langmuir isotherm. Both
properties, solubility at the inlet conditions, and equilib-
rium adsorption isotherms reveal the same trends. Large
deviations between the ideal and mixture calculations are
observed for C1. In this case, both fluids strongly inter-
act with the solid structure and the competition for the
binding sites cannot be captured by considering sepa-
rately individual adsorption isotherms for pure compo-
nents. In Fig. 4a, large deviations between the ideal
and mixture calculations are observed for C1. In this
case, both fluids strongly interact with the solid struc-
ture and the competition for the binding sites cannot be
captured by considering separately individual adsorption
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isotherms for pure components. The differences are less-
ened when adsorption of one of the components strongly
dominates over the other (C3) and the results are almost
identical if both components adsorb weakly (C2) due to
the reduced adsorption density and lack of competition
for the available porous space. Notably, as expected, the
selectivity grows with volume fraction of solid lattice sites
ϕs due to the increased solid–fluid interactions.
The DMFT calculations were performed to establish a

non-equilibrium steady state flux across the lattice struc-
ture. The outcome of the DMFT calculation is the local
density and flux on each site, from which other prop-
erties can be derived. Eq. 17 is used to calculate the
permeability

k = J
L

A′∆p
(17)

where J , L, and A
′
are the total flux in the direction

of pressure gradient, length of the membrane, and cross-
sectional area of the membrane, respectively.

Fig. 4d–4f shows the perm-selectivity calculated us-
ing the DMFT. Firstly, for all the cases, the ideal perm-
selectivity is in good agreement with the actual perm-
selectivity calculated from mixtures. For C2, the perm-
selecitivties from ideal and mixtures are almost identical,
and there are small deviations for C1 and C3. This is
stemmed from the competing effect between fluids which
is not captured from single-component calculations. Nev-
ertheless, this demonstrates the reasonable validity of
using single component permeation data to predict the
perm-selectivity for mixtures in agreement with many
experimental observations, although systems where this
assumption does not hold have also been reported. [72]

However, the most important observation from Fig. 4
is associated with the differences in the values of perm-
selectivity and sorption selectivity. While the trend is
the same for both properties, as selectivity increases with
the density of the polymer, the values of perm-selectivity
are much lower (as many as two orders of magnitude)
compared to sorption selectivity, suggesting that the dif-
fusion is playing a significant role in the fluid separation
performance. This is also consistent with the experimen-
tal observations, where a large value of S can lead to the
so-called “immobilising sorption” effect, where D, and
hence the permeability k, are reduced. [73]

Using the lattice model, we can elucidate which trans-
port effects contribute to the effective perm-selectivity in
disordered structures.

For this, we visualize a particular system, C3 polymer
with ϕs = 0.43 in Fig. 5. We note here that this structure
has a somewhat higher fraction of solid lattice sites, and
we employ this structure to emphasize and illustrate the
topological effects. While in general, the fraction remain-
ing available vacant lattice sites is below the percolation
threshold for square lattice, we checked that the particu-
lar matrix realizations employed remain percolated with
respect to fluid transport. The top panel in Fig. 5 shows

1.5

-1.5

0

0.5

1

-1

-0.5

Jl,l+1
A (×10−6)
10

8

6

4

2

0

ΔαA/B

FIG. 5. Visualization of the flux distribution (Top) and vi-
sualization of the local selectivity difference (Bottom) in the
polymer matrix with ϕs = 0.43.

the local flux (J l,l+1
A ) distribution in the direction of fluid

flow, and the bottom panel demonstrates the local se-
lectivity difference (∆αA/B

) where the local selectivity

(αlocal
A/B) is calculated from the following equation:

αlocal
A/B =

J l,l+1
A /∆pA

J l,l+1
B /∆pB

(18)

where ∆p is the pressure drop across the membrane. The
local selectivity difference is defined as:

∆αA/B
=
αlocal
A/B − αA/B

αA/B
(19)

The first thing to notice about this picture is the large
areas coloured white, not showing any distribution of flux
or local selectivity. These regions are spatially isolated
from the rest of the structure and therefore nothing can
diffuse in or out of these regions. Secondly, it is clear
from the picture that the distribution of the flux and
selectivity is very heterogeneous reflecting the disorder
of the underlying matrix.
The specific system and matrix realization shown in

Fig. 5 is employed here as a particularly strong illustra-
tion of the important role of the connectivity issues in
the overall performance of the membrane. Indeed, the
permeability across the whole structure shown in the fig-
ure hinges on a single passage or channel in the middle
of the structure (shown in the ellipses in the figure). All
molecules diffusing in the pressure gradient across this
structure must pass through this channel. The local se-
lectivity calculated for this crucial link is very close to
the average overall perm-selectivity of the whole struc-
ture and it is much lower than the sorption selectivity
for the same structure.
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Type I II III

21.95 325.97 942.05

5.37 0.18 15.67

16.59 1.00 41.76

1

0.75

0.5
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ωl,l+1
A

kA

αA/B
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ρA

0.2

0.3

0.1

ρA ωl,l+1
A

FIG. 6. Transport properties in a single channel with different
arrangements of solid lattice sites forming the walls. The fluid
and solid lattice sites are represented as grey and red spheres,
respectively. The properties are calculated based on C3 with
a length of the system of 200 lattice sites. The black and
blue colour bars represent the fluid density and the average
hopping rate under steady state conditions of component A,
respectively.

While this example is obviously an extreme case of
connectivity-limited transport (due to a high volume
fraction of solid lattice sites representing polymer), it
is symptomatic for all model systems considered in this
study.

It seems that in disordered structures such as the ones
considered here, not all the regions contribute to the
transport across the membrane and the regions that do
contribute to the transport, may exhibit effective selec-
tivity very different from what one would expect from
the equilibrium sorption measurements.

We would like to illustrate the last statement by con-
sidering two very simplified toy models, which allow us
to consider two specific effects in isolation.

The first simplified model system examines the in-
fluence of the energy barriers on the effective perm-
selectivity. For this, we consider a structural element
that consists of a single channel of lattice sites. For sim-
plicity, we focus only on one case of solid–fluid interaction
parameters, C3. The systems considered in Fig. 6 differ
in the arrangement of solid lattice sites, shown in red,
around the channel. In particular, in Type I and III,
each lattice site available for adsorption is surrounded ei-
ther by 1 or 2 solid lattice sites. This in general creates
a uniform energy profile across the channel. Effectively,
the difference between these two systems is the resulting
strength of solid–fluid interaction at each available site
which is doubled in system III compared to I. A very dif-
ferent structure is associated with system II, where only
every second site available for adsorption is in contact
with 2 solid lattice sites. This leads to periodic (with
the period of 1 lattice site) variation of the energy of
solid–fluid interaction from −2ϵsf to 0. In the panel be-
low the visualization of the structure of the system, we
show the hopping rate from site to site under the steady
state condition. It is clear that the systems behave very

C1 C2 C3

16.20 1.73 143.81

2.95 0.52 2.97

2.50 1.32 9.32

Si,A
Si,B

kA

αA/B

SA

SB

50

40

30

20

10

0

FIG. 7. Transport properties for a lattice fragment of a chan-
nel with a dead-end side-branch pore. The red and grey
spheres represent solid and fluid lattice sites, respectively.
This dead-end pore is repeated every 10 lattice sites and the
system is in total 200 lattice sites long. The color bar shows
the scale for the local sorption selectivity.

differently. In the systems with significant energy bar-
riers, the sites feature non-uniform density and hopping
rate between the sites, unlike in systems I and III where
their properties are uniform across the channel. In turn,
this has significant repercussions on the behavior of the
system in αA/B vs kA and αA/B vs SA

SB
coordinates. In-

deed, in systems with uniform distribution of solid sites
along the channel, αA/B is increased with kA, as a result
of stronger solid–fluid interactions on each site. This in-
crease in αA/B is also associated with the increase in SA

SB
.

Type II is a system with energy barriers that dramati-
cally deviates from these trends: it features very low flux,
and the perm-selectivity is effectively unity as the system
does not process any separation capabilities regardless of
the sorption selectivity.
What is important to understand is that in disordered

polymer structure the overall behavior reflects a complex
combination of I, II, III patterns discussed above and this
is one of the reasons why sorption driven separations in
glassy polymers do not easily conform to a single theo-
retical formalism.
In the second simplified example, we focus specifically

on the topological effects which may lead to substantial
differences in perm-selectivity and sorption selectivity be-
havior. For this, we consider a channel with a dead-end
side-branch pore as shown in Fig. 7. In static sorption
calculations, the porous space in the dead-end branch
shows very high selectivity due to the strong confine-
ment and enhanced solid–fluid interactions. However, in
the non-equilibrium transport studies, we observe that
under the steady state conditions, there is no flux in this
branch pore and it has effectively no influence on the
transport properties of this structural element as these
properties are dominated by the main channel through
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FIG. 8. Perm-selectivity (αA/B) as a function of permeability
of component A (kA). Panel (a) shows the CO2/N2 results
from the literature and the values for PIMs are highlighted
in black, where (b)–(d) corresponds to results from systems
C1–C3, respectively. The color bar shows the solid fraction of
the polymer matrix, ϕs.

which the fluid must pass. As a result, the effective perm-
selectivity of this element can be significantly lower than
the sorption selectivity, in the case of C3, the difference
is an order of magnitude between perm- and sorp- se-
lectivity. We found that this observation depends only
on the geometry and holds for all the cases of solid–fluid
interaction tested. The disordered lattice structure con-
sidered previously of course does not feature such simple
elements, but it contains complex regions of various sizes
that exhibit high adsorption selectivity but do not influ-
ence fluid transport and resulting perm-selectivity.

With this picture in mind, let us now return to the
disordered lattice matrix systems, explore their behavior
in Robeson coordinates, and relate this behavior to the
experimental observations.

The perm-selectivity is plotted with respect to perme-
ability on a log–log scale in Fig. 8. Fig. 8a reports
again the experimental results obtained from the litera-
ture with the PIM based membranes highlighted in black,
[12–31] and panel (b)–(d) demonstrates the results for
C1–C3, respectively. In order to emphasize the trend,
percolated matrices with higher fractions of solid lattice
sites have also been incorporated into the analysis.

Concentrating on the predictions from the theory, all
systems considered here exhibit a similar trend where
the performance cloud can be essentially divided into
two regions. The first region, on the left side of each
graph, is associated with low porosity structures. In
this region, the systems exhibit a significant degree of
scattering. However, by moving to the matrices with

higher porosities, the permeability of the structure in
this regime can be increased without significant sacri-
fice of perm-selectivity. This process continues up to a
region in permeability (or density of the structure) be-
yond which there is a sharp decrease in perm-selectivity.
This sharp decrease constitutes the second region.
Interestingly, while the experimental data in panel (a)

is a collection of results over a large number of polymers
of different structures and chemical compositions, it also
shows similar patterns and two regions identified by the
theoretical model. Furthermore, the series of points at
the transition region indicating the highest permeabil-
ity while maintaining good perm-selectivity correspond
to the high porosity PIM materials highlighted in black
triangles.
Let us summarize the implications of our findings.

Firstly, within our model, the ideal perm-selectivity ob-
tained from permeability of individual components agrees
well with the actual perm-selectivity. Using ideal perm-
selectivity as a performance metric for polymer materials
is a common practice in the membrane separations com-
munity. However, not all systems follow this assumption.
[72] Given the very general nature of the model, we can
hypothesize that to observe non-ideal effects one must
include other elements into the model such as the kinetic
effects.
Currently, there is no theoretical justification for the

Robeson bound for sorption driven processes such as
CO2/N2 separation. Using DMFT, we demonstrate that
for what is commonly thought as an equilibrium sorption-
driven separation, diffusion still plays a significant role in
the separation mechanism. Using very simple models of
structural elements to isolate various scenarios, we are
arriving at the following conclusions, some of them de-
liberately more speculative than the others to prompt
further theoretical and computation studies:
1. The behavior of the complex disordered structure is

governed by both equilibrium and diffusion factors, with
the diffusion properties being a strong function of the
potential energy surface.
2. The overall transport behavior of the disordered

structures is governed by the combined contributions of
various structural elements and with a strong dependence
on topology of the porous space. It is possible that de-
pending on the value of permeability, a different mecha-
nism dominates. This is why it is challenging to develop
a Robeson bound for these systems within a framework
of a single transport theory.
3. As a result, within the presented model, sorption

selectivity is the limiting behavior that is never actually
attained in the dynamic process. The perm-selectivity
values are always significantly lower than sorption selec-
tivity. This could suggest the following: if the perm-
selectivity exceeds the equilibrium sorption selectivity, it
indicates that the kinetic separation mechanisms are also
contributing to the overall separation process.
4. The transition point between the two regimes of

perm-selectivity identified in this work corresponds to
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the best separation performance that can be achieved for
a group of polymers with similar strength of solid–fluid
interactions (in other words for polymers with similar
chemistry). Interestingly, generalized for many different
experimental polymer systems, this point corresponds to
the PIM materials.

5. Based on the previous statement, it seems that the
rational strategy to improve the performance of a group
of polymers with similar solid–fluid interactions should
be focused on improving their permeability characteris-
tics. This could in principle be achieved with the addition
of structuring elements (e.g. nanotubes, nanoflakes) that
streamline diffusion pathways in the disordered polymers.

IV. SUPPLEMENTARY MATERIAL

The supplementary material provides additional de-
tails on the equilibrium adsorption isotherms for the
polymer systems.
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[19] M. L. Cecopieri-Gómez, J. Palacios-Alquisira, and
J. Dominguez, J. Membr. Sci. 293, 53 (2007).

[20] M. M. Dal-Cin, A. Kumar, and L. Layton, J. Membr.
Sci. 323, 299 (2008).

[21] B. Comesaña-Gándara, J. Chen, C. G. Bezzu, M. Carta,
I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J. C.
Jansen, and N. B. McKeown, Energy Environ. Sci. 12,
2733 (2019).

[22] D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii,
and V. Shantarovich, Macromolecules 35, 2129 (2002).

[23] M. Heuchel, D. Hofmann, and P. Pullumbi, Macro-
molecules 37, 201 (2004).

[24] X. Hu, J. Tang, A. Blasig, Y. Shen, and M. Radosz, J.
Membr. Sci. 281, 130 (2006).

[25] W. Fang, L. Zhang, and J. Jiang, J. Phys. Chem. C 115,
14123 (2011).

[26] K.-S. Chang, K.-L. Tung, Y.-F. Lin, and H.-Y. Lin, RSC
Adv. 3, 10403 (2013).

[27] J. Zhou, X. Zhu, J. Hu, H. Liu, Y. Hu, and J. Jiang,
Phys. Chem. Chem. Phys. 16, 6075 (2014).

[28] K. Golzar, S. Amjad-Iranagh, M. Amani, and H. Modar-
ress, J. Membr. Sci. 451, 117 (2014).

[29] C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and
E. Drioli, J. Phys. Chem.B 118, 2746 (2014).

[30] H. Rabiee, A. Ghadimi, S. Abbasi, and M. T., Chem.
Eng. Res. Des. 98, 96 (2015).

[31] Y. Han and W. W. Ho, J. Membr. Sci. 628, 119244
(2021).

[32] B. D. Freeman, Macromolecules 32, 375 (1999).
[33] A. Y. Alentiev and Y. P. Yampolskii, J. Membr. Sci. 165,

201 (2000).



11

[34] L. Robeson, B. Freeman, D. Paul, and B. Rowe, J.
Membr. Sci. 341, 178 (2009).

[35] B. W. Rowe, L. M. Robeson, B. D. Freeman, and D. R.
Paul, J. Membr. Sci. 360, 58 (2010).

[36] A. Alentiev and Y. Yampolskii, Ind. Eng. Chem. Res. 52,
8864 (2013).

[37] M. De Angelis, G. Sarti, and F. Doghieri, J. Membr. Sci.
289, 106 (2007).

[38] M. G. De Angelis, G. C. Sarti, and F. Doghieri, Ind.
Eng. Chem. Res. 46, 7645 (2007).

[39] B. Smit, J. A. Reimer, C. M. Oldenburg, and I. C. Bourg,
Introduction to carbon capture and sequestration, Vol. 1
(World Scientific, 2014).

[40] N. Vergadou and D. N. Theodorou, Membranes 9, 98
(2019).

[41] G. Yilmaz and S. Keskin, Ind. Eng. Chem. Res. 51, 14218
(2012).

[42] A. Ozcan, C. Perego, M. Salvalaglio, M. Parrinello, and
O. Yazaydin, Chem. Sci. 8, 3858 (2017).

[43] A. Ozcan, R. Semino, G. Maurin, and A. O. Yazaydin,
Chem. Mater. 32, 1288 (2020).

[44] B. Comesaña-Gandara, L. Ansaloni, Y. Lee, A. Lozano,
and M. De Angelis, J. Membr. Sci. 542, 439 (2017).

[45] H. Wu, J. Thibault, and B. Kruczek, J. Membr. Sci.
618, 118715 (2021).

[46] S. Mohsenpour, Z. Guo, F. Almansour, S. M. Holmes,
P. M. Budd, and P. Gorgojo, J. Membr. Sci. 661, 120889
(2022).

[47] P. A. Monson, J. Chem. Phys. 128, 084701 (2008).
[48] J. R. Edison and P. A. Monson, Langmuir 29, 13808

(2013).
[49] G. L. Aranovich and M. D. Donohue, Phys. Rev. E 60,

5552 (1999).
[50] L. Sarkisov and P. A. Monson, Phys. Rev. E 65, 011202

(2001).
[51] H.-J. Woo, L. Sarkisov, and P. A. Monson, Langmuir

17, 7472 (2001).
[52] E. Kierlik, P. A. Monson, M. L. Rosinberg, L. Sarkisov,

and G. Tarjus, Phys. Rev. Lett. 87, 055701 (2001).
[53] H.-J. Woo, L. Sarkisov, and P. Monson, in Characteriza-

tion of Porous Solids VI, Studies in Surface Science and
Catalysis, Vol. 144 (Elsevier, 2002) pp. 155–162.

[54] C. Sangwichien, G. L. Aranovich, and M. D. Donohue,
Colloids Surf. A Physicochem. Eng. Asp. 206, 313 (2002).

[55] D. Matuszak, G. L. Aranovich, and M. D. Donohue, J.
Chem. Phys. 121, 426 (2004).

[56] D. Matuszak, G. L. Aranovich, and M. D. Donohue, J.
Non-Equilib. Thermodyn. 31 (2006).

[57] D. Matuszak, G. L. Aranovich, and M. D. Donohue,
Phys. Chem. Chem. Phys. 8, 1663 (2006).

[58] P. A. Monson, Langmuir 24, 12295 (2008).
[59] J. R. Edison and P. A. Monson, J. Low Temp. Phys. 157,

395 (2009).
[60] J. R. Edison and P. A. Monson, Faraday Discuss. 146,

167 (2010).
[61] J. R. Whitman, G. L. Aranovich, and M. D. Donohue,

J. Chem. Phys. 134, 094303 (2011).
[62] J. R. Edison and P. A. Monson, Microporous Mesoporous

Mater. 154, 7 (2012).
[63] J. R. Edison and P. A. Monson, J. Chem. Phys. 138,

234709 (2013).
[64] A. Rathi, J. R. Edison, D. M. Ford, and P. A. Monson,

AIChE J 61, 2958 (2015).
[65] A. Rathi, E. Kikkinides, D. Ford, and P. A. Monson,

Langmuir 35, 5702 (2019).
[66] A. Desouza and P. A. Monson, Adsorption 27, 253

(2021).
[67] D. N. Lapshin, A. V. Gromov, E. E. Campbell, and

L. Sarkisov, J. Phys. Chem. C 125, 21254 (2021).
[68] E. Kikkinides, G. Gkogkos, P. Monson, and R. Valiullin,

J. Chem. Phys. 156, 134702 (2022).
[69] T. Yuan, A. H. Farmahini, and L. Sarkisov, J. Chem.

Phys. 155, 074702 (2021).
[70] T. Yuan and L. Sarkisov, Adv. Theory Simul. 5, 2200159

(2022).
[71] J.-F. Gouyet, M. Plapp, W. Dieterich, and P. Maass,

Adv. Phys. 52, 523 (2003).
[72] E. Ricci, M. Minelli, and M. G. De Angelis, Membranes

12, 857 (2022).
[73] C. R. Mason, L. Maynard-Atem, K. W. Heard,

B. Satilmis, P. M. Budd, K. Friess, M. Lanc̆, P. Bernardo,
G. Clarizia, and J. C. Jansen, Macromolecules 47, 1021
(2014).


