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A B S T R A C T

Since its inception, the non-equilibrium lattice fluid (NELF) model has become a vital tool in correlating and
predicting the gas solubility behaviour in glassy polymeric membranes. But like its equilibrium variant, the
NELF model is highly constrained by the availability of the pure polymer characteristic parameters, which are
not always convenient to obtain as the need arises. In this study, we provide a proof-of-concept for building a
machine learning-based group contribution method (ML-GC) for the Sanchez–Lacombe equation of state (EoS)
pure polymer parameters. The ML-GC model was built using a modified version of the Marrero and Gani’s
method, which incorporates machine learning regression into the GC parameterisation process. The final model
was capable of reproducing the parameters of a randomly selected test set of polymers, with a diverse range
of chemical structures. The resultant average AARD% of the predicted densities in this set is 5.59%, with no
polymer exceeding 15%. Moreover, to test the model’s capabilities in estimating the parameters of high glass
transition temperature polymers, we predicted a priori the characteristic parameters of 6 polyimides from the
knowledge of their molecular structure. The ML-GC parameters were also incorporated into the NELF model
to predict the infinite dilution solubility coefficients (𝑆0) of some of these polymers and the results were
validated against experimental data. Furthermore, the ML-GC-NELF model was also used for the first time to
represent effectively the gas solubility isotherms in PIM-PI-SBI and PIM-PI-EA with relatively small magnitudes
of the binary interaction parameters (𝑘𝑖𝑗). Despite the small data-set used herein, the model performance was
satisfactory, however, as more data are being published in literature, the proposed ML-GC model has the
potential of providing even more accurate predictions for a wider range of polymers, ultimately leading to
lesser reliance on experimental data for modelling the gas sorption.
. Introduction

The ubiquity, processability, and affordability of polymeric ma-
erials have made them an attractive choice in the development of
embranes for gas separation processes [1]. However, the energy effi-

iency that is associated with polymer-based membrane gas separation
rocesses comes at a cost. Indeed, an inherent permeability–selectivity
rade-off, commonly known as the Robeson upper bound, can be ob-
erved [2]. A deep understanding of what governs the permeation and
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selectivity of gases is pertinent for the development of novel polymeric
membranes that outperform the current state of the art materials [3].

The transport of a gas penetrant in a dense polymeric membrane can
be described using the solution-diffusion (SD) model, which states that
the permeability is the product of a kinetic term (i.e the diffusivity) and
a thermodynamic factor (i.e. the solubility) [4]. Consequently, being
able to systematically analyse the solubility from a modelling prospec-
tive is important to characterise both the permeability and selectivity of
a gas in a polymeric membrane, particularly for processes targeting CO2
capture. By and large, CO2 often exhibits higher solubility in polymers
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compared to other light gases, hence, the solubility–selectivity plays a
critical role in determining the overall membrane performance [5].

The generality and robustness of equations of state (EoS) have
made them a powerful tool in the modelling of the thermodynamics
of polymer-containing systems. EoS based on the lattice fluid theory
(LF) [6–9], statistical associating fluid theory (SAFT) [10,11], and the
perturbed hard-sphere-chain (PHSC) model [12] have been successfully
applied in modelling the gas solubility in polymers at equilibrium
(i.e. in the rubbery and molten states) [13–16].

Currently, the vast majority of polymers at the Robeson upper
bound are glassy [17], which means that they exist in an intrinsic state
of non-equilibrium. Hence, the aforementioned EoS approaches funda-
mentally cannot describe such systems. A popular alternative to EoS
that is often capable of describing the gas solubility in glassy polymers
is the dual mode sorption (DMS) model [18,19]. The model represents
the gas penetrant as two distinct populations of sorbed molecules. On
one hand, the first group of molecules are dissolved into the bulk, in
a similar manner to rubbery and molten polymers, and is described by
Henry’s law. On the other hand, the second group is adsorbed onto the
microvoids that are present in the glassy polymer phase and is governed
by Langmuir adsorption isotherm. The widespread appeal of this model
comes from its simplicity and the ease of fit of its three adjustable
parameters. While the DMS model can correlate the majority of gas
sorption data very well, it may fail in describing complex solubility
isotherms such as the sigmoidal shape observed in alcohol sorption in
polymers. Moreover, the parameters are dependent on the operating
conditions (such as the fitted pressure range), the polymer history, and
the penetrant-polymer couple, which impacts the model’s predictive
capabilities [20–22].

The non-equilibrium thermodynamics for glassy polymers (NET-GP)
is another well established framework for modelling the gas sorption
in the amorphous glassy phase. In essence, the NET-GP can extend
any EoS to account for the non-equilibrium state, and give rise to its
non-equilibrium form. The non-equilibrium lattice fluid (NELF) [23–
25], based on the Sanchez and Lacombe (SL) EoS [6–8], is the most
widely applied case of this approach. Similar to its equilibrium variant,
the NELF model requires pure component parameters for both the
penetrants and the polymer to carry out the solubility calculations. The
gas parameters are often fitted to saturated vapour pressure and liquid
density data, while the parameters of the polymer are usually obtained
from pressure–volume–temperature (PVT) data in the rubbery region,
above the glass transition temperature (𝑇𝑔). The NELF model was
shown to have a remarkable predictive prowess. For instance, Minelli
et al. [26] predicted the solubility of mixed gases in glassy polymers
from the pure gas parameters and the binary interaction parameters
(obtained from the pure gas solubility isotherms) accurately. In con-
trast, Ricci et al. [27] have conducted a detailed sensitivity analysis on
the predictions of mixed-gas sorption from the pure gas-polymer DMS
parameters and found that in some cases, the model can only provide
a qualitative agreement between the predictions and the sorption data.

Despite that, the applicability of the NELF model is limited by
the availability of the pure component parameters, as the required
experimental data to be fitted are often not available for polymers
and it is not always convenient to obtain them, due to constraints
such as time and cost. In addition, the vast majority of the polymers
in the vicinity of the Robeson upper bound exhibit high 𝑇𝑔 [28]. As
a result, some of these polymers would chemically degrade before
reaching the rubbery state. Some of these polymers include polyimides,
and polymers of intrinsic microporosity (PIMs). To circumvent this
issue, the EoS parameters can be acquired from solubility data [29–
31], however this method is neither predictive nor general, and would
require access to solubility data for multiple gas species.

Another avenue for modelling the gas sorption in polymers is
through molecular simulations. In particular, the grand canonical Monte
Carlo (GCMC) [32], Gibbs ensemble Monte Carlo (GEMC) [33], staged
2

particle deletion (SPD) Widom [34], test particle insertion [35], and
direct particle deletion (DPD) [36,37] methods can be applied for
such efforts. However, many computational complexities can arise,
especially for the case of a glassy amorphous polymer phase. Firstly,
the characteristic relaxation times of the glassy polymer occurs in time
scales that are currently inaccessible by atomistic methods, which may
lead to problems in the generation of realistic configurations of the
glassy polymer. Secondly, at high pressure, or in the presence of sorbing
agents, swelling effects must be accounted for. This could be addressed
by relying on pre-swollen atomistic packing models [38,39] or by
resource-intensive iterative procedures [40]. These complexities, along-
side the relatively larger computational cost associated with molecular
methods, may restrict the applicability of these simulations to gas
sorption processes.

As an intermediate bridge between atomistic methods and EoS
approaches, Minelli et al. [41] have proposed a multi-scale approach
to model the gas solubility and obtain the EoS parameters by coupling
both methods. Here, the PVT behaviour of two high 𝑇𝑔 polyimides, Ul-
tem and Kapton, were obtained 𝑖𝑛 𝑠𝑖𝑙𝑖𝑐𝑜 via molecular dynamics (MD)
simulations above 𝑇𝑔 , which are inaccessible experimentally. From
there, the pure polymer parameters of the PC-SAFT EoS were fitted to
the PVT data and the pure gas solubilities below (𝑇𝑔) were modelled
using the NET-GP framework (i.e. through the NE-PC-SAFT). Ricci
et al. [42] applied the same technique to model the mixed CO2∕CH4
gas solubility in Matrimid and attained the solubility–selectivity as a
function of temperature, pressure and composition. While this approach
greatly reduces the computational cost by delegating the solubility
predictions to the EoS, this procedure remains intractable when probing
the vast chemical space of polymers with unreported EoS parameters.

With the advent of machine learning (ML) as a powerful correlation
tool, many data-driven models were built to predict various trans-
port and thermophysical properties of polymeric materials [43–48].
Li et al. [43] have built a backpropagation artificial neural network
(ANN) to estimate the solubility of CO2 and N2 in polystyrene, and CO2
in polypropylene. Similarly, Ting and Yuan [44] have trained a radial
basis function (RBF) ANN to estimate the CO2 solubility in 7 different
polymers. However, a major limitation of both these works is the lack
of chemical structure information inputted into the model. Hence, these
applications tend to be limited to a small sub-set of polymers and
gas species. ML methods can aid in the development of quantitative
structure–property relationships (QSPR), where a functional relation-
ship between the chemical structure of the polymer and the property
is determined. ML-QSPR have proven to be indispensable in the field
of polymer informatics, and were not only successful in predicting rel-
evant properties [49–51], but also in identifying hypothetical polymers
above the Robeson upper bound [45,48].

QSPR methods can also be coupled with EoS to improve their
predictive capabilities. The most widely used QSPR for such appli-
cations are group contribution methods (GCM). Throughout the past
few decades, several GCMs have been applied to estimate the pure
and mixture EoS parameters for polymers. High and Danner have
developed a group contribution lattice fluid (GCLF) EoS for polymer
systems [52,53]. A modified version [9] of this GCLF EoS was later
implemented to predict the solubility of CO2 in polymer melts [14].
Tihic et al. [54] have employed the Constantinou and Gani’s GCM [55]
to estimate the non-associating pure component parameters for the
simplified PC-SAFT. However, in the aforementioned studies, the GC
values were regressed to low molecular weight compounds vapour
pressure and liquid density experimental data. This may result in a poor
extrapolation of the estimations to polymer substances.

Constantinou and Panayiotou [56] have applied Constantinou and
Gani’s GCM to determine the SL-EoS pure component parameters using
a small data set of polymers. Due to the promising results, the model
was later extended [57] to include 58 polymers. Moreover, Peters
et al. [58,59] have also obtained the non-associating PC-SAFT pure
component parameters by the GC parameterisation of a small set of

polymers using the Lorentz–Berthelot mixing rule as the objective
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Fig. 1. The workflow for the development of a machine learning based group-contribution non-equilibrium lattice fluid (ML-GC-NELF) model and its application to gas sorption.
(𝟏) Collection and determination of pure component characteristic parameters from literature and volumetric properties. (𝟐) Segmentation of the repeating unit of the polymer
database. (𝟑) Machine learning-based regression of the group contribution values for the characteristic Sanchez–Lacombe parameters. (𝟒) Modelling gas sorption in glassy polymers
using the ML-GC-NELF model.
function of the minimisation i.e. by minimising the deviation of the
experimentally obtained EoS parameters from the mixing rules values
of the groups. While these studies did include polymers in their GC
parameterisation scheme, the data sets were relatively small, and a
proper test set to verify the ability of these models to generalise to other
polymers was lacking.

More recently, ML-QSPR models for the PC-SAFT pure component
parameters have surfaced in literature. Matsukawa et al. [60] have
built an ANN regression-based GCM to capture the non-linear rela-
tionships between a structurally diverse set of low molecular weight
compounds and their EoS parameters. Similarly, Habicht et al. [61]
used molecular descriptors generated from extended-connectivity fin-
gerprints (ECFPs) [62] to build another ANN model for the EoS parame-
ters of PC-SAFT. However, ML-QSPR are yet to be applied to exclusively
predict the pure component EoS parameters of polymers

In this work, a ML regression-based GCM was developed for the
estimation of the SL-EoS pure component parameters for polymers and
the following protocol was used (see Fig. 1).
(1) A database of 102 polymer SL EoS parameters was built using values
from the literature for 37 homopolymers, followed by fitting additional
65 EoS parameters to pressure–volume–temperature (PVT) data for new
homopolymers to expand the database.
(2) The Marrero and Gani molecular fragmentation process [63] was
employed to determine the structural groups of the monomers (i.e. re-
peating units) of the polymer data set.
(3) The GC values were obtained for the SL characteristic parameters
of the polymers, by using linear regression and ML regression and the
results were validated against the SL parameters and density values of
a randomly selected test set.
(4) The GC model was used to predict the SL parameters for 6 high 𝑇𝑔
polyimides and PIMs, not previously included in the database. For two
of these polymers, no SL parameters were available in the literature for
comparison.
(5) The ML-GC-NELF model was validated by evaluating the solubility
and PVT data in the six polymers and comparing it, where possible,
with the NELF model, i.e. the version using the conventionally retrieved
values of the polymers SL parameters.

As a result, new SL parameters for 2 high-performance materials
(i.e. PIM-PI-EA and PIM-PI-SBI), that could not be previously modelled
through an EoS approach, were determined and used to describe the
gas solubility via the ML-GC-NELF, to demonstrate a use-case of the
proposed modelling strategy.
3

2. Theory

2.1. The Sanchez and Lacombe Equation of State (SL-EoS)

The Sanchez and Lacombe equation of state (SL-EoS) [6–8] uses
the lattice fluid (LF) theory to represent molecules, which are assumed
to be ordered in space in a lattice structure. This allows the model
to ‘coarse-grain’ the molecular configurations and interactions, greatly
simplifying the process of deriving a close-form expression for the EoS.
The SL-EoS can be defined using the reduced forms of the temperature,
pressure, and density (T̃, P̃, �̃�):

�̃� = 1 − exp

[

−
�̃�2

�̃�
− 𝑃

�̃�
− �̃�

(

1 −
𝑁𝑐
∑

𝑖

𝜑𝑖
𝑟𝑖

)

]

(1)

�̃� = 𝑇
𝑇 ∗ 𝑃 = 𝑃

𝑃 ∗ �̃� =
𝜌
𝜌∗

(2)

where 𝑇 ∗, 𝑃 ∗, and 𝜌∗ are the characteristic SL-EoS parameters, 𝜑𝑖 is
the volume fraction of component i at close packing, and 𝑟𝑖 is number
of lattice sites occupied per unit (or ‘‘mer’’) of component i. The pure
polymer characteristic SL parameters are usually obtained by fitting to
PVT data. When dealing with mixtures, mixing rules must be applied to
determine the characteristic parameters. A detailed description of these
rules, alongside other relevant information to the SL-EoS are shown in
table S1 (supplementary material).

Since the SL-EoS inception, many pure polymers characteristic pa-
rameters have been determined. These parameters have been fitted to
various experimental data. The vast majority are from PVT properties,
but others have been derived from thermal expansion and pressure
coefficients [64], and gas sorption data [29]. In addition, new char-
acteristic parameters were obtained in this work for polymers with
available PVT properties. To obtain the best fit, the mean squared error
(MSE) was chosen as the cost function:

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖
(𝜌𝑒𝑥𝑝𝑖 − 𝜌𝑝𝑟𝑒𝑑𝑖 )2 (3)

where 𝜌𝑒𝑥𝑝𝑖 and 𝜌𝑝𝑟𝑒𝑑𝑖 are the experimental and predicted density values
of point i respectively, and n is the total number of experimental points.

2.2. The Non-Equilibrium Lattice Fluid (NELF) model

The non-equilibrium thermodynamics for glassy polymers (NET-
GP) [23–25] theory provides the fundamental framework to extend
the SL-EoS to its non-equilibrium variant, i.e. the non-equilibrium
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lattice fluid (NELF) model. The theory postulates the following: (1) The
penetrant-polymer system is homogeneous, isotropic, and amorphous.
(2) The system can be described using the macroscopic thermodynamic
state variables i.e. temperature (T), pressure (P), and composition (𝛺)
alongside an additional order parameter, the polymer density (𝜌𝑝𝑜𝑙),
that accounts for the systems departure from equilibrium. In effect, this
implies that any two polymer samples at the same temperature, pres-
sure, and composition will display similar thermodynamic behaviour
regardless of their histories, provided that their densities are the same.
Thus, any thermodynamic potential, for instance, the Helmholtz free
energy density (a) can be expressed as:

𝑎𝑁𝐸 = 𝑎𝑁𝐸 (𝑇 , 𝑃 ,𝛺𝑖, 𝜌𝑝𝑜𝑙) (4)

In this theory, the polymer density can be deemed as an internal
state variable for the system, and it can be shown that the non-
equilibrium thermodynamic relations that are endowed with such vari-
ables are independent of the pressure [65]:
(

𝜕𝑎𝑁𝐸

𝜕𝑃

)

𝑇 ,𝛺𝑖 ,𝜌𝑝𝑜𝑙
= 0 (5)

As a consequence of Eq. (5), a relationship between the non-
equilibrium state of the glassy polymer phase and the equilibrium state
can be determined:

𝑎𝑁𝐸 (𝑇 , 𝑃 ,𝛺𝑖, 𝜌𝑝𝑜𝑙) = 𝑎𝐸𝑄(𝑇 ,𝛺𝑖, 𝜌𝑝𝑜𝑙) (6)

In a similar manner, a relationship between the non-equilibrium
chemical potential of penetrant i can be related to the equilibrium value
at the same temperature, composition, and polymer density:

𝜇𝑁𝐸
𝑖 =

(

𝜕𝑎𝑁𝐸

𝜕𝜌𝑖

)

𝑇 ,𝛺𝑖 ,𝜌𝑗≠𝑖 ,𝜌𝑝𝑜𝑙
⇒ 𝜇𝑁𝐸

𝑖 (𝑇 , 𝑃 ,𝛺𝑖, 𝜌𝑝𝑜𝑙) = 𝜇𝐸𝑄
𝑖 (𝑇 ,𝛺𝑖, 𝜌𝑝𝑜𝑙) (7)

Hence, the composition of penetrant i in the glassy polymer, in
seudo-equilibrium with the external gas phase, can be calculated using
n appropriate EoS by finding an analytical expression for the chemical
otential, provided that the experimental value of the polymer density
s known. For the NELF model, this expression is given by [66]:

𝜇𝑖
𝑅𝑇

= ln (�̃�𝜑𝑖) − ln (1 − �̃�)
[

𝑟0𝑖 +
𝑟𝑖 − 𝑟0𝑖

�̃�

]

− 𝑟𝑖 − �̃�
𝑟0𝑖 𝑣

∗
𝑖

𝑅𝑇

×
[

𝑃 ∗
𝑖 +

𝑁𝑐
∑

𝑗
𝜑𝑗 (𝑃 ∗

𝑗 − 𝛥𝑃 ∗
𝑖𝑗 )
]

+ 1 (8)

The full description of the variables in Eq. (8) is available in table
S1. Embedded in the mixing rules (refer to table S1) is the binary
interaction parameter (𝑘𝑖𝑗). This adjustable parameter corrects for the
mer–mer energy interaction of the mixture. In the absence of dilation
data, especially in the presence of sorbing agents or under high pres-
sures, a simple linear correlation can be used to calculate the swollen
polymer’s density [67]:

1
𝜌𝑝𝑜𝑙

= 1
𝜌0𝑝𝑜𝑙

(

1 +
𝑁𝑐−1
∑

𝑖
𝑘𝑠𝑤,𝑖𝑃𝑖

)

(9)

here 𝜌0𝑝𝑜𝑙 is the dry polymer density, 𝑃𝑖 is the partial pressure of
enetrant i, and 𝑘𝑠𝑤,𝑖 is the swelling coefficient of penetrant i. In this
ork, only pure gas sorption will be considered, thus, a single pair of
binary interaction parameter and a swelling coefficient is sufficient.
he binary interaction parameter is obtained through best fit in the low
ressure region of the gas solubility isotherm. In contrast, the swelling
oefficient is obtained by fitting to the higher pressure region of the
urve. Usually, as a first order approximation, both of these parameters
4

re set to zero. r
.3. The Marrero and Gani group contribution method

In this work, the Marrero and Gani molecular fragmentation method
s used to determine the structural groups present in the polymer
atabase. This method is found to be well suited for this database
ince it is capable of distinguishing between the finer details of many
romatic and non-aromatic rings present in the chemical structure of
he polymers investigated here. For the sake of brevity, the reader
s referred to the original work for the fragmentation rules [63].
o summarise, the molecular structure of the repeating unit can be
egmented into three types of groups: first, second, and third order
roups (FOGs, SOGs, and TOGs). FOGs contain a large set of simple
roups and must be used to describe all the polymers repeating units.
n contrast, not all polymers have higher order groups, but for those
hat do, they could give a better representation of the proximity effects,
ine structural differences, and isomeric differences. The groups found
n the materials comprising our database are listed in Tables 3, 4, and

below. It should be noted that new groups that are not found in the
ist provided by Marrero and Gani have been created specifically to
escribe this polymer data set. For example, groups like Si-O, Si(CH3)3
tc. are used to describe silicon containing polymers. To determine the
roup contribution (GC) values, Marrero and Gani [63] have proposed
he following equation:

−𝑋0 =
∑

𝑖
𝑁𝑖𝐶𝑖 +𝑤

∑

𝑗
𝑀𝑗𝐷𝑗 + 𝑧

∑

𝑘
𝑂𝑘𝐸𝑘 (10)

n the present work, 𝑋 is the characteristic SL-EoS parameter (𝑇 ∗, 𝑃 ∗,
r 𝜌∗), 𝑋0 is a universal SL-EoS parameter constant, i, j, and k are the
ndexes assigned to the various first, second, and third order groups
espectively. 𝑁𝑖, 𝑀𝑗 , and 𝑂𝑘 represent the occurrences of each FOG,
OG and TOG in the database. Finally, 𝐶𝑖, 𝐷𝑗 , and 𝐸𝑘 corresponds to
he GC values of the groups. The machine learning implementation of
his method will be discussed in Section 3.3.

. Results and discussion

.1. Populating the polymer database

To build the database for the SL parameters of homopolymers we
irstly collected values published in the literature on 37 polymers (refer
o table S2 in the supplementary information). Most of the parameters
n this list were obtained by best fitting PVT data above the glass
ransition to the SL EoS model predictions. In some cases, e.g. Matrimid
r PIM-1, such data are not obtainable, as the polymer chemically
egrades before reaching the glass transition point. In such cases, one
an use indirect routes, i.e. performing molecular simulations of the
VT behaviour above the hypothetical glass transition temperature
r, as in the case of some the parameters reported in table S2, best-
itting gas solubility data onto the NELF predicted values [29,67,68].
o extend the database, we fitted 65 new SL polymers parameters. We
hose polymers for which PVT data were available in the literature
bove the glass transition temperature. The fitting procedure is based
n the non-linear square fitting of the model’s parameters, with Eq. (3)
s the objective function. The numerical computations were carried out
sing MATLAB’s fmincon solver. The algorithm chosen for this task is
he interior-point method. The list of new parameters is reported in
able 1 below.

.2. Fragmenting the monomers and splitting the database

The database of 102 polymers were fragmented into FOGs, SOGs,
nd TOGs as reported in Tables 2, 3, and 4 respectively. For further
achine learning processing, the database was split into a training set

nd test set. 83 polymers were randomly assigned to the training set
nd 19 to the test set with the only condition that all 90 groups were
resent in the training set. Fig. 2 and Table 5 showcase the composition
f the groups and the different classes of polymers found in both sets

espectively.
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Table 1
List of polymer SL characteristic parameters fitted in this work from PVT data.

Name T∗ [K] P∗ [MPa] 𝜌∗ [g/cm3] Data Ref.a

poly(l-lactic acid) 584.30 827.30 1.388 [69]
poly(4-chloro styrene) 801.80 418.80 1.277 [69]
nylon 6 817.70 682.30 1.119 [69]
poly(ethylene adipate) 657.30 643.80 1.267 [69]
poly(ethylene naphthenate) 784.10 854.90 1.409 [69]
nylon 9 808.80 507.60 1.031 [69]
nylon 11 792.70 495.70 1.009 [69]
nylon 12 778.40 476.20 0.996 [69]
nylon 66 788.70 756.60 1.138 [69]
nylon 67 842.60 580.10 1.091 [69]
nylon 68 833.90 584.10 1.073 [69]
nylon 69 824.40 556.20 1.061 [69]
nylon 610 793.90 600.90 1.065 [69]
nylon 612 809.50 474.40 1.028 [69]
nylon 13/13 764.20 484.60 1.007 [69]
poly(ethylene isophthalate) 739.90 687.70 1.404 [69]
poly(ethylene succinate) 675.20 702.00 1.370 [69]
poly(1-octene) 672.50 351.30 0.914 [69]
poly(hexamethylene terephthalamide) 848.20 626.50 1.224 [69]
polyethersulfone 920.70 609.70 1.431 [69]
poly(isobutyl methacrylate) 581.47 667.07 1.175 [69]
poly(n-propyl acrylate) 642.80 440.80 1.135 [69]
poly(n-propyl methacrylate) 656.86 417.35 1.143 [69]
poly(n-butyl acrylate) 650.50 417.80 1.101 [69]
poly(n-hexyl methacrylate) 619.90 448.30 1.078 [69]
poly(lauryl methacrylate) 635.90 437.25 0.999 [69]
nylon 4/6 867.35 631.97 1.154 [69]
nylon 7 820.89 603.57 1.083 [69]
polyvinylidene fluoride 615.00 680.00 1.810 [69]
poly(vinyl formal) 703.70 595.40 1.282 [69]
poly(vinyl butyral) 669.40 509.10 1.155 [69]
polyvinyl carbazole 832.79 517.07 1.271 [69]
poly(acrylic acid) 839.20 749.17 1.489 [69]
poly(methacrylic acid) 674.10 1096.20 1.443 [69]
poly(vinyl fluoride) 759.00 487.90 1.349 [69]
poly(butylene terephalate) 732.89 762.28 1.325 [69]
poly bisphenol-A Isophthalate 821.19 550.30 1.277 [69]
polyarylate 827.50 610.10 1.268 [69]
poly ether ether ketone 930.80 462.40 1.285 [69]
polyetherimide (Ultem 1000) 940.00 473.50 1.330 [69]
poly(trimethylene terephthalate) 811.80 527.80 1.287 [70]
phenoxy resin (polyhydroxyl ether) 769.84 618.17 1.230 [69]
poly(azomethine ether) (n = 4)b 826.37 681.48 1.214 [69]
poly(azomethine ether) (n = 7)b 761.70 663.30 1.204 [69]
poly(azomethine ether) (n = 8)b 754.70 708.07 1.209 [69]
poly(azomethine ether) (n = 9)b 753.45 632.75 1.174 [69]
poly(azomethine ether) (n = 10)b 892.47 445.86 1.157 [69]
poly(azomethine ether) (n = 11)b 732.70 626.90 1.168 [69]
polyisoprene 672.38 446.86 0.955 [69]
poly(1-hexene) 603.30 600.20 0.908 [71]
poly(1-heptene) 664.00 300.17 0.881 [71]
poly(1-nonene) 605.00 300.00 0.902 [71]
poly(1-undecene) 633.00 300.66 0.903 [71]
poly(1-tridecene) 639.48 300.13 0.905 [71]
poly(1-octadecene) 640.95 300.00 0.896 [71]
poly(tert-butyl acrylate) 627.34 368.93 1.058 [72]
Poly(dimethylsilylene methylene) 686.20 371.60 0.926 [73]
poly(methylphenylsilylene methylene) 734.00 430.80 1.113 [74]
polymethylphenylsiloxane 657.69 403.85 1.180 [75]
poly(methyl-p-tolyl siloxane) 582.56 385.88 1.337 [75]
poly hexafluoropropylene oxide 554.70 294.50 2.084 [69]
DP1,1c 780.43 558.69 1.253 [76]
DP1,2d 797.70 534.70 1.178 [76]
DP1,3e 777.10 534.90 1.202 [76]
poly(butylene succinate) 684.89 567.55 1.253 [77]

a Reference for the experimental data used for the fitting.
b n represents the number of spacer −CH2− groups in the main chain.
c Poly[oxy(2,2-dimethyl propane-1,3-diyl) carboxybisphenyl4,4′-dicarbonyl].
d Poly[oxy(2-methyl, 2-ethyl propane-1,3-diyl) carboxybisphenyl4,4′-dicarbonyl].
e Poly[oxy(2-methyl, 2-n-propyl propane-1,3-diyl) carboxybisphenyl4,4′-dicarbonyl].
5
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Table 2
List of first-order groups (FOGs). For the definition of the groups refer to [63].

No. Group No. Group

1 CH 27 CH2Cl
2 CH2 28 SiOa

3 CH3 29 CF2
4 C 30 aC–SO2
5 CH=CH 31 Sia
6 aCH 32 C=C
7 aC–CH 33 aC–Cl
8 aC–CH3 34 CONHCH2
9 CH3COO 35 aC fused w/arom. ring
10 CCOO 36 aC–CONH
11 CH (cyclic) 37 O (cyclic)
12 CH2 (cyclic) 38 N (cyclic)
13 CH2O 39 aC fused w/non-arom. subring
14 aC 40 OH
15 aC–O 41 COOH
16 CH3O 42 CHF
17 aC–OOC 43 aC–CO
18 aC–C 44 CO (cyclic)
19 CF3 45 C (cyclic)
20 aC–COO 46 aC–N=CHa

21 CHCOO 47 aC–C=C
22 CH2COO 48 aC–CN
23 CHCN 49 aC–OH
24 CHCl 50 O
25 CH=C 51 CF
26 Cl 52 aC–Sia

a These are new groups that are not listed in Ref. [63].

Table 3
List of second-order groups (SOGs). For the definition of the groups refer to [63].

No. Group No. Group

53 CH2–CH𝑚=CH𝑛 (m,n in 0..2) 63 CH𝑚=CH𝑛–Cl (m,n in 0..2)
54 (CH3)2CH 64 CH3–CH𝑚=CH𝑛 (m,n in 0..2)
55 AROMRINGs1𝑠2 65 CH𝑐𝑦𝑐–CH2
56 CH3COOCH or CH3COOC 66 CHOH
57 CH𝑐𝑦𝑐–OOC 67 CHCOOH or CCOOH
58 AROMRINGs1𝑠2𝑠3𝑠5 68 AROMRINGs1𝑠2𝑠4
59 AROMRINGs1𝑠4 69 AROMRINGs1𝑠2𝑠4𝑠5
60 COO–CH𝑛–CH𝑚–OOC (n,m in 1..2) 70 CH𝑐𝑦𝑐–CH3
61 AROMRINGs1𝑠3 71 (CH3)3C
62 OOC–CH𝑛−CH𝑚–COO (n,m in 1..2) 72 Si(CH3)3a

a These are new groups that are not listed in Ref. [63].

3.3. GC regression

In this work, a three-level regression is carried out. Firstly, the first
order group contributions (𝐶𝑖) are determined alongside the universal
onstant 𝑋0, as explained in detail in the following paragraph. This
s done while assigning 0 to the SOG and TOG coefficients w and z.
hen, the values of 𝐶𝑖 and 𝑋0 are kept constant during the second

evel regression. Here, w is ‘switched on’ by assigning to it a value of
nity, and the SOG contributions (𝐷𝑗) are determined while keeping
z equal to zero. Similarly, the third level regression is carried out by
keeping 𝐶𝑖, 𝐷𝑗 , and 𝑋0 constant and switching on z, which leads to the
determination of the third order group contribution (𝐸𝑘) values. When
dealing with small data sets, the presence of many groups can become
problematic: the larger the number of groups, the more sparse the
feature set becomes [78]. As a consequence, even a simple linear model
can over-fit, when enough groups are present, and the model would
not be able to generalise well to new polymers [79]. To ameliorate
this, a minor adjustment to the Marrero and Gani regression procedure
is introduced herein. The first order group term of Eq. (10) will be
replaced with a surrogate model produced from machine learning (ML)
algorithms, while the higher order groups regression will remain the
same since their input arrays are not dense enough for ML.
6

3.3.1. Determination of first order groups
We relied on two ML algorithms (1) ridge regression (RR) and (2)

support vector regression (SVR), that are considered well suited for
small data sets, and compared their performance in the regression of
𝑇 ∗, 𝑃 ∗, and 𝜌∗. The RR method is a linear model modified with a
egularisation term (𝛼) introduced into the cost function to reduce the
hances of over-fitting [80]:

min
C,𝑋0

𝑛
∑

𝑙
(𝑋𝑙 − C𝑇N𝑙 −𝑋0)2 + 𝛼‖C‖22 (11)

here 𝐂 is a vector that holds the GC values of all FOGs for all
he n polymers considered in the summation (i.e. 𝐶𝑖), and 𝐍𝑙 is the
ector containing the occurrences of each FOG in polymer l. The larger
he magnitude of the positive scalar hyperparameter 𝛼, the lower the
ariance of the final model becomes. In other words, the sensitivity
f the model towards the data points diminishes as the model gets
ore regularised. In the case of SVR, the formal representation of the

ptimisation problem of the FOGs becomes [79]:

min
,𝑋0 ,𝜁𝑙 ,𝜁𝑙

1
2
‖C‖22 + 𝑐

𝑛
∑

𝑙
(𝜁𝑙 + 𝜁𝑙)

s.t. C𝑇N𝑙 +𝑋0 −𝑋𝑙 ≤ 𝜖 + 𝜁𝑙
𝑋𝑙 − C𝑇N𝑙 −𝑋0 ≤ 𝜖 + 𝜁𝑙

(12)

where 𝜁𝑙, 𝜁𝑙 are slack variables, and c, 𝜖 are hyperparameters. The
value 𝜖 specifies a region of space (or ‘tube’) in which no penalty
is incurred when an instance (i.e. data point) falls under it, while
c is a regularisation term which has the opposite effect of 𝛼, thus
the lower the magnitude of c, the higher the regularisation effect
and vice versa [81]. Another important feature of SVR is its support
of kernel tricks. From expression 12, it can be seen that SVR is a
linear model, but with the aid of kernel tricks, the model can also
solve non-linear problems in a computationally efficient manner. A
more rigorous explanation of the mathematics of kernel methods can
be found elsewhere [79,81]. Thus, the tuning of these kernel tricks
hyperparameters must also be taken into consideration when building
the ML models. For the problem investigated herein, we found that the
Radial Basis Function (RBF) kernel had produced the best results. The
RBF kernel introduces a new regularisation hyperparameter, 𝛾, which
defines the influence of a single data point on the model i.e. the smaller
the value of 𝛾 is, the larger the influence of the instances on the model.
It is also important to note that both of these algorithms are sensitive to
feature scaling (i.e. the algorithm performs better if the variable scales
are the same), hence, the FOG structural array was standardised:

𝑁 ′
𝑖,𝑙 =

𝑁𝑖,𝑙 − �̄�𝑖

𝜎𝑖
(13)

where 𝑁 ′
𝑖,𝑙 is the new standardised occurrence number of group i in

olymer l, 𝑁𝑖,𝑙 is the original occurrence number of group i in polymer
, �̄�𝑖 is the average occurrence number of group i in the training set,
nd 𝜎𝑖 is the standard deviation of the occurrence number of group i.

.3.2. Tuning the hyperparameters
In this work, grid search was used to tune the hyperparameters [82].

ere, the training set was split into five validation sets or ‘folds’, in
ddition to a ‘primary’ set that includes all FOG groups (see Fig. 3).
hen, the model was trained on the primary set and four of these folds
nd tested on the last remaining one. This was repeated five times until
ll of the folds had been used as a scoring set (i.e. the set chosen for
esting). The selection of the hyperparameter combination is based on
he best average performance over the five evaluations. This technique
s sometimes called the ‘5-fold cross validation grid search’. Fig. 3 below
rovides an illustration of the procedure.

The performance metric selected as the scoring function is the
oefficient of determination (𝑅2):

2 = 1 −
∑

(𝑋𝑙 − �̂�𝑙)2
∑

(14)

(𝑋𝑙 − �̄�)2
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Table 4
List of third-order groups (SOGs) For the definition of the groups refer to [63].

No. Group No. Group

73 aC–CO–aC (diff. rings) 82 aC–O–aC (diff. rings)
74 aC–CH𝑚–aC (diff. rings)(m in 0..2) 83 aC–CO𝑐𝑦𝑐 (fused ring)
75 aC–SO𝑛–aC (diff. rings)(n in 1..4) 84 aC–NH𝑛,𝑐𝑦𝑐 (diff. rings) (n in 0..1)a

76 AROMFUSED [2]s2 85 aC–CH𝑛,𝑐𝑦𝑐 (diff. rings) (n in 0..1)
77 CH𝑐𝑦𝑐−(CH𝑚)𝑛–CH𝑐𝑦𝑐 (m > 0; n in 0..2) 86 aC–CH𝑛,𝑐𝑦𝑐 (fused rings) (n in 0..1)
78 aC–aC(diff. rings) 87 aC–N=CH–aC (diff. rings)a

79 aC–NH𝑛,𝑐𝑦𝑐 (fused rings) (n in 0..1) 88 aC–O𝑐𝑦𝑐 (fused rings)
80 COO–(CH𝑛)𝑚–OOC (m > 2; n in 0..2) 89 CH (multi-ring)
81 aC–O–CH𝑛–aC (diff. rings) (n in 0..2) 90 CH𝑐𝑦𝑐–CH𝑐𝑦𝑐 (diff. rings)

a These are new groups that are not listed in Ref. [63].
Fig. 2. The composition of the groups in the data set.
Fig. 3. A graphical representation of the grid search algorithm. For every combination of the hyperparameters values that are specified by the user, the model evaluates the
scoring function five times. The primary set is present in each evaluation since it holds all groups. In each iteration, a different validation set is used (highlighted in blue). Then,
the scoring function is averaged over the five iterations. The combination of hyperparameters that resulted in the best performance is selected as the optimum.
where 𝑋𝑙 is the real value of the SL-parameter of polymer l, �̂�𝑙 is the
predicted value of polymer l, and �̄� is the mean value of the real SL
parameters. All of the algorithms used for building the models were
taken from the open source python library scikit-learn [82].

For each EoS parameter, the accuracy obtained using RR and SVR
were compared in order to select the best model. The models hyper-
parameters were tuned by performing the 5-fold cross validation grid
search described earlier on the training set (i.e. the 83 polymers set).
Once the hyperparameters were tuned, the performance of the models
was assessed using the test set. For 𝑇 ∗ and 𝜌∗, RR had performed best,
while for 𝑃 ∗, SVR predictions were better. A detailed discussion of the
7

models performance can be found in Section 3.4. The final surrogate
models’ optimised hyperparameters are showcased in Table 6.

3.3.3. Adding higher order groups
Higher order groups were then added to the picture, which were

linearly regressed as described earlier. The aim of such groups is to
provide, to some extent, a better representation of the proximity effects
and structural differences between the polymers. Some polymers in this
database, for example, poly(ethylene isophthlate) and poly(ethylene
terephthlate), are constitutional isomers of each other. Hence, FOGs
alone would not be able to distinguish them apart. Higher order groups
also ‘absorb’ some of the errors made by the previous groups. In
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Table 5
The classification of the polymer samples in the data set.

Polymer class Training set Test set

Polyesters 12 3
Polyamides 11 3
Polyalkenes 8 1
Polymethacrylates 7 2
Polyacrylates 5 1
Si-Containing polymers 6 1
Polyazomethines 5 1
Polyglycols 3 1
Polycarbonates 4 0
Polystyrenes 4 1
Polyvinylethers 2 1
Polyimides 1 1
Polydienes/halodienes 3 0
Polysulfones 1 1
PIMs 1 0
Polyketones 0 1
Polyhydroxyethers 1 0
Polynitriles 1 0
Polyphenylethers 0 1
Polyvinylesters 1 0
Polyethers 1 0
Other Polyolefin/haloolefins 5 0
Polyvinylcarbazoles 1 0

Total data points 83 19

Table 6
The optimised hyperparameters for the surrogate models of FOGs.

Parameter Machine learning algorithm Hyperparameters

𝑇 ∗ Ridge regression 𝛼 = 15
𝑃 ∗ Support vector regression c = 321, 𝛾 = 0.01a, 𝜖 = 0.1
𝜌∗ Ridge regression 𝛼 = 1.3

a 𝛾 is a hyperparameter associated with the radial basis function (RBF) kernel.

practice, however, the error reduction observed in the training set is not
universal, i.e. some of the polymers may perform worse. Moreover, the
presence of higher order groups may worsen the predictions accuracy
in the test set [83]. As such, the effects of higher order groups must be
examined.

3.4. Model performance

3.4.1. Prediction of SL parameters
Table 7 displays the effects of the GC method based on FOG only,

FOG and SOG, or FOG, SOG, and TOG on the estimation of the SL
parameters. We considered two error indicators, namely the average
absolute relative deviation (AARD%) and the root mean squared error
RMSE). As it can be observed, the effect of higher order groups is
inuscule. However, in order to be able to distinguish between isomers,

he higher order groups were kept in the final model. In the case of
∗, the test set AARD% (the primary metric considered for this work)
lightly increases with the addition of TOGs, hence only FOGs and SOGs
ere included.

The parity charts of each of the parameter models are illustrated
n Fig. 4. As it can be seen, the performance of all models, both on
he training and test sets, are satisfactory. However, it is clear from
ig. 4(b) that P∗ is the worse performing parameter, exhibiting an
ARD of 5.99% and 10.82% in the training and test sets respectively.

nitially, a RR model was built to predict P∗, however, the regularised
inear model was not capable of capturing the structural–property
rend very accurately, hence, a SVR model was built to introduce non-
inearities into the function instead. The results of the SVR model,
espite not being as accurate as the T∗ and 𝜌∗ models, is still acceptable.
8

3.4.2. Prediction of polymer density
The fitting of the SL characteristic parameters on PVT data is

achieved through non-linear least-squares regression. The objective
function of these optimisation problems is infested with local min-
ima, and, as a consequence, global minima are not guaranteed [84].
Moreover, depending on the initial guesses provided to the algorithm,
different local optima may be returned as a solution. As a consequence,
no universal set of characteristic parameters can be obtained based
on a particular set of experimental data. This is further exacerbated
by the fact that, in some instances, the temperature and pressure
ranges at which the fitting is carried over is different for the same
polymer, resulting in entirely different sets of parameters that are
reported in literature [85]. To truly test the model’s performance,
comparing the predicted SL parameters AARD alone would not suffice,
thus, the ML-GC-SL EoS density predictions must be compared to the
experimental values for a more comprehensive analysis of the model
efficacy. Tables 8 and 9 show the predicted SL parameters and the
performance of the models for the test set respectively. The average
AARD% of the density predictions of the ML-GC-SL model is around
.59%, with all density AARDs% being less than 15%. These results
re reasonably good, considering that the estimations are entirely
redictive, the data set is limited in size, and the test set is diverse
n terms of chemical structure. At face value, over-represented poly-
er classes, like polyamides and polyazomethine ethers, have their
arameters predicted with satisfactory accuracies. There are of course,
xceptions to the rule. Poly(methacrylic acid) parameters, for example,
re poorly predicted. This may be caused by the presence of the
COOH group, which is absent from the rest of the polymethacrylates
n the data set. In the SL-EoS, T* represents the average mer–mer
nteractions of the polymer, P* is a proxy for the cohesive energy
ensity at closed packing, and 𝜌∗ is the density of the polymer at closed

packing [6,31]. Therefore, as a polar substance, poly(methacrylic acid)
will exhibit higher values of these parameters compared to the other
polymethacrylates. This trend is also observed in the training set, where
the parameter values of poly(acrylic acid) is higher than the rest of the
members of its class. In the training set, the group –COOH only occurs
once, and its group contribution value comes from poly(acrylic acid).
This may have contributed to the poor predictions of poly(methacrylic
acid), since their experimentally fitted values for T* and P* are vastly
different. On the other hand, the error in the 𝜌∗ prediction is much
less profound due to the similar experimentally fitted values of this
parameter for both polymers. In contrast, poly(n-propyl methacrylate)
predictions were more accurate, owing to its structural similarity to the
rest of the polymethacrylates training instances. We note that in the
presence of associating groups, models like the non-random hydrogen
bonding (NRHB) model [86–88] and the PC-SAFT EoS [10,89–91]
are better suited for describing such systems because they explicitly
consider these interactions in their formulation.

Despite having 8 other polymers of the same class in the training set,
poly(1-heptene) density error is still higher than average. The reason
for this may be that polyalkenes only contain alkyl groups (i.e. CH2,
CH3 etc.) and no other unique groups that distinguish them from the
rest of the other instances. The alkyl groups are present in many of
the polymers in the data set, hence, their group contribution values
also incorporate the effects of their presence in other polymer classes,
like polyesters and polyglycols, which may lead to lower accuracies
when it comes to predicting the parameters of polyalkenes. This is also
apparent in the training set, where some of the highest errors belong
to polyalkenes.

Polymers like poly(o-methylstyrene), poly(ethylene terephtalate),
DP1,2 and polysulfone had their PVT properties predicted with rela-
tively high accuracies. This may be due to the presence of analogous
polymers with similar chemical structures and SL parameters values
in the training set. For example, the SL parameters of polysulfone
were extrapolated from the same structural groups as polyethersulfone,

which is found in the training set. The only difference however, is that
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Table 7
The effect of the group order on the average absolute relative deviation (AARD%) and the root mean square error (RMSE).

Group T∗ [K] P∗ [MPa] 𝜌∗ [g/cm3]

Training set Test set Training set Test set Training set Test set

AARD [%]

FOG 3.74 5.45 5.86 11.53 1.97 4.92
SOG 3.34 5.28 5.96 10.83 1.88 4.89
TOG 3.26 5.19 5.99 10.82 1.80 4.98

RMSE

FOG 34.82 56.92 75.17 121.64 3.42E−2 7.96E−2
SOG 32.95 58.38 70.98 113.03 3.30E−2 7.96E−2
TOG 32.81 57.89 70.59 112.90 3.20E−2 8.04E−2

The AARD The RMSE is defined as
√

1
𝑛

∑𝑛
𝑙 (𝑋𝑙 − �̂�𝑙)2.
Table 8
The ML-GC-SL characteristic parameters predictions for the test set.

Polymer T∗ [K] P∗ [MPa] 𝜌∗[g∕cm3]

poly (o-methylstyrene) 749.76 357.23 1.0961
poly(2,6-dimethyl-1,4-phenylene oxide) 724.11 515.00 1.1454
poly(tetrahydrofuran) 634.79 482.27 1.1588
poly (ethylene terephtalate) 756.41 679.67 1.3623
nylon 6 768.28 521.69 1.1089
nylon 612 808.98 556.38 1.0262
nylon 13/13 796.13 519.38 0.9260
poly(ethylene succinate) 678.76 649.53 1.3011
poly(n-propyl acrylate) 642.38 454.15 1.1941
poly(n-propyl methacrylate) 652.85 459.42 1.1720
poly(vinyl butyral) 645.12 591.61 1.3439
poly(metharcylic acid) 840.46 678.81 1.4741
poly ether ether ketone 819.15 556.54 1.2506
polyetherimide (Ultem 1000) 939.70 473.91 1.4487
poly(azomethine ether (n = 9) 791.98 619.75 1.1777
poly(1-heptene) 680.21 342.57 0.9463
poly(methyl-p-tolyl siloxane) 666.23 407.48 1.1599
DP1,2 778.77 546.85 1.2026
polysulfone 895.60 591.29 1.2634

polysulfone substitutes one of the aC-SO2 with an aC-C and two CH3
groups in polyethersulfone. Since the difference between the experi-
mentally fitted 𝑇 ∗ of these two polymers is the largest, its error was
also anticipated to be higher than the other two parameters. Similarly,
the experimentally fitted 𝑃 ∗ values were very close, making it the most
accurate parameter predicted for this polymer.

The model is also capable of predicting the SL parameters for
polymers of families that did not participate in the training process
reasonably well. For example, poly(2,6-dimethyl-1,4-phenylene oxide),
or PPO, had its parameters predicted from groups found in polycar-
bonates, polyesters etc., and the results were successful. Figs. 5 to 8
showcase some of the PVT predictions made by the ML-GC-SL in
comparison to the experimental values for some of the polymers in the
test set.

3.5. Extending the model predictions beyond the database: estimating the
SL parameters of polyimides

3.5.1. Predicting the SL parameters for new high 𝑇𝑔 polyimides
The validation of the ML-GC models built in the previous sections

was found satisfactory, however, in order to obtain the ML-GC-NELF
model version to use for production, the surrogate models were re-
trained (using the same hyperparameters) with the entirety of the
data set (i.e. training and test sets), to improve the models accuracy.
Table 10 showcases the new AARD and RMSE values of the data set.
The new values of the SL parameters for the entire data-set can be found
in the supplementary information section (Table S3). Then, the SL pa-
rameters of six new high T𝑔 were determined. This set of new polymers
was not part of the 102 polymer data set that was used to train and
test the models in the previous sections. This was done to ensure that
9

we do not introduce any bias in the models during the optimisation
process of the hyperparameters. In other words, we wanted to build ML
models that were fully capable of predicting the SL parameters of high
𝑇𝑔 polymers, but to preserve the integrity of the GCM, the models were
first tuned and tested on a randomly selected polymer set and then used
to evaluate the SL parameters of materials that had never been exposed
to the models before. The list of the new high T𝑔 polymers, along side
their predicted SL parameter values, parameter and density AARD can
be found in Table 11, and the experimentally fitted SL parameters are
reported in Table S2.

For two of these polymers, PIM-PI-EA and PIM-PI-SBI, no SL char-
acteristic parameters are available in literature, perhaps due to the
lack of sufficient gas sorption data, and the values reported here are a
priori predictions of the ML-GC-NELF approach based on their monomer
structure. For the other polyimides with experimentally fitted SL pa-
rameters, the absolute relative errors of P∗ and 𝜌∗ are reasonably good,
especially when compared to the data set’s AARD. The AARD of T∗

on the other hand, is relatively higher. However, as mentioned earlier,
comparing the AARD of the parameters alone can be misleading, thus,
the results must also be validated against experimental data. Since we
are dealing with high T𝑔 polymers, not all of the polyimides listed
below have experimental PVT data. Hence, in the upcoming sections,
the results will be also validated against solubility data.

3.5.2. Verifying the ML-GC-NELF predictions against PVT data: 6FDA-
6FpDA and 6FDA-ODA

Scherillo et al. [88] have reported the SL-parameters (found in Table
S2) of 6FDA-6FpDA and 6FDA-ODA by fitting them to the experimental
PVT properties. Since the authors did not publish the experimental
data, the ML-GC-SL predictions were compared against the predictions
made by the SL-EoS, using the experimentally fitted parameters above
T𝑔 . The resultant density AARD’s for 6FDA-6FpDA and 6FDA-ODA are
both satisfactory (5.79% and 1.00% respectively) as shown in Table 11.
It is also important to note that, despite having comparable parameter
errors, the ML-GC-SL has produced a more accurate prediction of
the PVT data in the case of 6FDA-ODA than 6FDA-6FpDA. Hence, it
is always advisable to validate the SL parameter predictions against
experimental values. Fig. 8 showcases the PVT predictions made by
both models for 6FDA-ODA.

3.5.3. Verifying the ML-GC-NELF predictions against solubility data: the
infinite dilution solubility coefficient

As mentioned earlier, comparing the error to the experimentally
fitted SL parameters alone is not sufficient in assessing the model’s
efficacy. However, most of the high T𝑔 polyimides have no density data
in the rubbery region available in literature. To this end, the infinite
dilution solubility coefficient 𝑆0 of pure gases in the polymer was used
to validate the model performance. At the limit of zero pressure, the
expression for the solubility coefficient using the NELF model is given
by [29,96]:

ln (𝑆0) = ln
( 𝑇𝑠𝑡𝑝

)

+ 𝑟01

{ [

1 +
(𝑣∗1

∗ − 1
)𝜌∗2

0

]

𝑃𝑠𝑡𝑝𝑇 𝑣2 𝜌2
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Fig. 4. The parity charts of the final models performances of the parameters T∗*, P∗, and 𝜌∗. The experimental values refer to the parameters fitted to experimental data, and the
predicted values are the values generated by the GC model.
× ln
(

1 −
𝜌02
𝜌∗2

)

+
(𝑣∗1
𝑣∗2

− 1
)

+
𝜌02
𝜌∗2

𝑇 ∗
1
𝑇

2
𝑃 ∗
1
(1 − 𝑘12)

√

𝑃 ∗
1 𝑃

∗
2

}

(15)

where the subscripts STP, 1, and 2 represent standard temperature and
pressure, the penetrant, and the polymer respectively, for more details
about the variables please refer to Table S1 (supplementary informa-
tion). In addition to the penetrant and the polymer SL parameters,
10
Eq. (15) also requires the dry polymer density (𝜌02) as an input to
carry out the calculations. Tables S4 and Table 11 list the penetrant
SL parameters and the density values of the polymers respectively.
The experimentally fitted SL parameters of the listed polyimides with
no PVT data were obtained from gas sorption data using Eq. (15),
usually by setting the binary interaction parameter to 𝑘12 = 0 as a first
order approximation [29,31]. At diminishing pressure, this assumption
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Fig. 5. PVT data of Nylon 6. The continuous curves are the ML-GC-SL predictions and the discrete points are the experimental data.
Source: The experimental data are taken from Ref. [69].
Fig. 6. PVT data of DP1,2. The continuous curves are the ML-GC-SL predictions and the discrete points are the experimental data.
Source: The experimental data are taken from Ref. [76].
Table 9
AARD% of the ML-GC-SL characteristic parameters and the predicted PVT data of the test set.

Polymer T* [%] P* [%] 𝜌∗ [%] Density AARD 𝑅𝑒𝑓.a

poly(o-methylstyrene) 2.38 5.49 1.58 0.83 [92]
poly(2,6-dimethyl-1,4-phenylene oxide) 2.02 0.39 1.22 3.12 [69]
poly(tetrahydrofuran) 1.40 24.94 11.10 11.06 [56]
poly(ethylene terephtalate) 8.87 6.03 0.10 2.99 [69]
Nylon 6 6.04 23.54 0.93 2.33 [69]
Nylon 6/12 0.06 17.28 0.17 0.55 [69]
Nylon 13/13 4.18 7.18 8.02 6.97 [69]
poly(ethylene succinate) 0.53 7.47 5.01 4.75 [69]
poly(n-propyl acrylate) 0.07 3.03 5.21 5.15 [69]
poly(n-propyl methacrylate) 0.61 10.08 2.56 2.27 [69]
poly(vinyl butyral) 3.63 16.21 16.38 14.78 [69]
poly(methacrylic acid) 24.68 38.08 2.17 10.39 [69]
poly ether ether ketone 12.00 20.36 2.44 7.51 [69]
polyetherimide (Ultem 1000) 0.03 0.09 9.37 8.85 [69]
poly(azomethine ether (n = 9) 5.11 2.05 0.31 1.70 [93]
poly(1-heptene) 2.44 14.13 7.46 7.95 [71]
poly(methyl-p-tolyl siloxane) 14.36 5.60 13.26 11.24 [75]
DP1,2 2.37 2.27 4.25 1.43 [76]
polysulfone 7.90 1.45 2.99 2.27 [69]

Average 5.19 10.82 4.98 5.59

a References for the experimental PVT data.
is reasonable to make when dealing with light gases and n-alkanes
vapours. Another reason why this approximation is made is to avoid
having to fit 𝑘 for every gas simultaneously with the pure parameters,
11

12
and since every single data-point represents a single gas species, doing
so is inadvisable if one would like obtain a reliable and generalisable
set of the pure polymer parameters.
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Fig. 7. PVT data of poly(o-methylstyrene). The continuous curves are the ML-GC-SL predictions and the discrete points are the experimental data.
Source: The experimental data are taken from Ref. [92].
Fig. 8. A comparison of the ML-GC-SL density predictions (continuous curves) against the experimentally-fitted SL predictions (discrete points) for 6FDA-ODA.
Source: The experimentally fitted SL parameters were taken from Ref. [88].
Table 10
The re-trained models error indicators. These models were used to predict the SL
parameters of the polyimides that are not present in the data-set.

Parameter AARD [%] RMSEa

𝑇 ∗ 3.07 31.75
𝑃 ∗ 6.22 71.65
𝜌∗ 2.27 3.8E−2

a The RMSE units of T*, P* and 𝜌∗ are in K, MPa and g/cm3 respectively.

In this work, the predicted infinite dilution solubility coefficients
were calculated using this first order approximation through the ML-
GC-NELF model and the results were compared against the experimen-
tal value, which is obtained by the extrapolation to zero pressure of the
experimental data fitting given by the DMS relationship [97]:

𝑆0 = 𝑘𝑑 + 𝐶 ′
𝐻𝑏 (16)

where 𝑘𝑑 is Henry’s constant, 𝐶 ′
𝐻 is Langmuir capacity, and 𝑏 is the

hole affinity. These parameters are polymer-penetrant specific and are
fitted to gas sorption data. The DMS parameters values can be found
in Tables S5 to S8. Finally, for benchmark purposes, the original NELF
solubility coefficient at infinite dilution calculated with the first-order
approximation assumption, will also be compared to both the ML-GC-
NELF predictions and the experimental values. The difference between
12
the two models lies in the way the SL parameters were estimated for the
polymer, namely using experimental data in the case of NELF, and the
molecular monomeric structure in the case of the ML-GC-NELF model.

The ML-GC-NELF and the NELF infinite dilution solubility coeffi-
cient predictions for various gases are displayed in Fig. 9. It has to be
noticed, as explained above, that since the SL parameters are available
only for two of the four polymers examined in this section, the NELF
model calculations can be run only on this subset and the comparison
between the two versions of the model shall be confined to these
materials. Starting with the PIMs, the accuracy of the 𝑆0 predictions
ranges from excellent to satisfactory, as it can be seen from the RMSE
values reported in Table 12. Fig. 9 indicates that the 𝑆0 values for
PIM-PI-EA are good for all the gases tested. In the case of PIM-PI-
SBI, the error seems to be more prominent in N2, with the other gases
predictions being acceptable. In the upcoming Section 3.5.4, it will be
shown that for those two PIMs, only a minor adjustment for the gases
𝑘𝑖𝑗s would be required to fit the solubility isotherms, which is indicative
of the good accuracy of the estimated SL parameters.

It can also be observed from Table 12 that the RMSE of 6FDA-
DAM with regards to 𝑆0 is higher than the rest of the other polymers,
due to the poor estimation of the solubility coefficients of the alkane
vapours by both models. However, for the results of the other gases
tested herein, the accuracy of the models are comparable.
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Table 11
The predicted SL parameters, parameter AARD, density AARD, and the dry polymer densities of the polyimides selected. The density AARD are
based on the experimentally-fitted SL parameters.

Polymer T* [K] P* [MPa] 𝜌∗ [g/cm3] Density AARDa 𝜌0𝑝𝑜𝑙
Prediction Error Prediction Error Prediction Error

PIM-PI-SBI 651.71 – 494.70 – 1.4661 – – 1.12 [94]
6FDA-6FpDA 817.31 8.96% 509.07 6.84% 1.8521 2.55% 5.79%b 1.58 [88]
HAB-6FDA 900.77 25.11% 499.01 3.72% 1.6390 1.87% – 1.41 [31]
6FDA-ODA 887.23 10.32% 493.05 6.41% 1.6202 2.28% 1.00%c 1.49 [88]
6FDA-DAM 824.52 7.78% 496.65 3.47% 1.5135 8.83% – 1.33 [95]
PIM-PI-EA 902.34 – 521.89 – 1.4669 – – 1.12 [94]

Average – 13.04% – 5.11% – 3.88% 3.40% –

a Data taken from Ref. [88]. The AARD was calculated based on the predictions of the experimentally fitted SL parameters.
b Calculation range : 593–626 K and 0–80 MPa.
c Calculation range : 581–606 K and 0–80 MPa.
Table 12
RMSEa of the 𝑆0 calculations based on the first-order approximation (𝑘12 = 0) for the

L-GC-NELF and the NELF models.
Polymer NELF ML-GC-NELF

6FDA-DAM 305.85 161.3
PIM-PI-EA – 2.73
HAB-6FDA 2.40 7.94
PIM-PI-SBI – 13.17

a cm3(STP)/cm3(polymer)atm.

In addition, it is also worth noting that the quality of fit of the
lkane vapour values for 6FDA-DAM is superior in the case of the ML-
C-NELF model, which explains the lower RMSE value in comparison

o the NELF model. Finally, for HAB-6FDA, the ML-GC-NELF model
eems to over predict 𝑆0 in all of the three gases investigated. This
ay be attributed to the relatively higher error made in estimating
∗ in comparison to P∗ and 𝜌∗ (see Table 11). Regardless, the ML-GC-
ELF 𝑆0 predictions all seem to be very satisfactory for the polyimides

ested, especially considering that there were no chemically analogous
olecules in the terms of chemical structure found in the data-set

i.e. no 6FDA-based polymers exist in the data-set, and PIM-1 differs
n chemical structure from PIM-PI-EA and PIM-PI-SBI).

.5.4. Modelling of the pure gas solubility isotherms in high 𝑇𝑔 polymers
using the ML-GC-NELF model

As mentioned above, the ML-GC model allowed us to obtain the
SL parameters for two polymers that were previously unknown in
literature, PIM-PI-SBI and PIM-PI-EA. The predicted SL parameters
were used to model the light gas sorption for these polymers. Figs. 10
and 11 show the resultant experimental gas solubility isotherms and the
ML-GC-NELF calculations. For these calculations we could refine the 𝑘𝑖𝑗
as customary. In addition, the swelling coefficient 𝑘𝑠𝑤 was also fitted
to the sorption data at the high pressure region of the isotherms. From
Table 13, it can be seen that the magnitudes of the adjusted 𝑘𝑖𝑗𝑠 are

ithin 0.1 for all the gas species and the polymers involved. This minor
djustment to the mixing rule is another indication of the accuracy of
he predicted SL parameters. As it can be observed in Fig. 9, the 𝑆0 test
onducted on PIM-PI-SBI SL parameters shows that the quality of fit
ith respect to CH4 and N2 is worse in comparison to the other gases,
hich explains the relatively higher values of k𝑖𝑗 required to fit their

sotherms.
This also explains the relatively higher k𝑖𝑗 for Ar and O2 in PIM-PI-

A. As one would expect, the swelling coefficient is the highest in CO2
or all polymers, as it is the strongest sorbing agent of the listed gases.
his is followed by CH4, which seems to exhibit the second highest
welling coefficient. This behaviour can be confirmed visually from the
xperimental data in Figs. 10 and 11, where a downward concavity is
bserved in both these gas species (and is most prominent in CO2). For

the other light gases (N2, O2, Ar), the solubility isotherms are, in effect,
linear, with minimal to no swelling that can be observed based on the
13

𝑘𝑠𝑤 values.
4. Conclusion

The NELF model, developed by Doghieri and Sarti [23], is a valu-
able tool for the systematic characterisation of gas sorption in glassy
polymeric membranes, and remains to be one of the most powerful
tools to date for such purposes. But like its equilibrium counterpart, the
NELF model predictive capabilities are constrained by the availability
of pure and mixture parameters, specifically for polymers. In the past,
the issue of predicting pure polymer Sanchez–Lacombe parameters was
addressed through group contribution methods. However, the efficacy
of these models was not tested rigorously due to the limited size of the
data sets. In this work, a data set of 102 polymers was curated to build
a group contribution model for the SL parameters. Roughly 80% of
these polymers were used for training, while the remaining 20% were
used for evaluating the model’s performance. The group contribution
method was based on the Marrero and Gani’s approach [63], with a mi-
nor adjustment to the multi-step regression procedure, which involves
replacing the first-order term with a surrogate machine learning model.

The resultant regularised machine learning models were able to
reproduce the SL parameters with satisfactory agreement to the experi-
mentally fitted values. Coupled with the Sanchez–Lacombe equation of
state, the group contribution model was also validated against experi-
mental pressure–volume–temperature properties, leading to an average
density AARD of 5.59% for the test set. Using the same hyperparam-
eters, the models were retrained on the entire data set to determine
the SL parameters of high T𝑔 polymeric membranes, consisting of
6FDA-based polyimides and PIMs. Many of these non-conventional
membranes lack experimental PVT data, hence another experimental
metric, known as the infinite dilution solubility coefficient 𝑆0 was also
used to validate the models. Through the first-order approximation
(i.e. 𝑘𝑖𝑗 = 0), the predicted ML-GC-NELF 𝑆0 values were found to be
comparable to the original NELF predictions (which is reliant on the
experimentally fitted polymer SL parameters) and the experimental 𝑆0.
From this list of polymers, PIM-PI-SBI and PIM-PI-EA had their light
gas sorption isotherms calculated through the ML-GC-NELF model. For
these PIM polymers, the ML-GC-NELF was able to capture the trend
of the experimental gas solubility isotherms successfully with minor
adjustment to 𝑘𝑖𝑗 , which is indicative of the accuracy of the predicted
SL parameters.

As a proof-of-concept, the results of this ML-GC model seem promis-
ing, and just like any data-centric model, the proposed model has
the potential to be improved as more data on polymers are collected.
Important classes of polymers, such as thermally rearranged (TR) poly-
mers and bio-polymers, to name a few, were missing in this data set.
These polymers, and many more, will be added to build better GC
models in the foreseeable future. Moreover, the same principles used
in this GC method, can also be exploited to estimate the parameters of
other EoS (i.e. PC-SAFT), and that will be the focus of our future work.
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Fig. 9. The parity charts of the solubility coefficients at infinite dilution. The experimental values were obtained by the dual mode sorption model and the predicted values were
obtained through the first-order approximations made by the ML-GC-NELF and the NELF models.
Table 13
The binary interaction parameters and the swelling coefficients for each of the polymer-penetrant pairs.

Polymer CO2 CH4 N2 O2 Ar

k𝑖𝑗 k𝑠𝑤 k𝑖𝑗 k𝑠𝑤 k𝑖𝑗 k𝑠𝑤 k𝑖𝑗 k𝑠𝑤 k𝑖𝑗 k𝑠𝑤

PIM-PI-EA 0.023 0.032 0.020 0.021 −0.032 0 0.065 0 0.080 0
PIM-PI-SBI −0.055 0.047 −0.0844 0.020 −0.100 0 −0.02 0 −0.055 0

k𝑠𝑤 units in MPa−1.
14
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Fig. 10. The gas solubility isotherms in PIM-PI-SBI (25 ◦C). The discrete points are the experimental values, and the continuous curves are the ML-GC-NELF calculations.
Source: Experimental data are taken from Ref. [94].
Fig. 11. The gas solubility isotherms in PIM-PI-EA (25 ◦C). The discrete points are the experimental values, and the continuous curves are the ML-GC-NELF calculations.
Source: Experimental data are taken from Ref. [94].
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parameters used in this work.
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