7,749 research outputs found
Trapping of electrons near chemisorbed hydrogen on graphene
Chemical adsorption of atomic hydrogen on a negatively charged single layer
graphene sheet has been analyzed with ab-initio Density Functional Theory
calculations. We have simulated both finite clusters and infinite periodic
systems to investigate the effect of different ingredients of the theory, e.g.
exchange and correlation potentials, basis sets, etc. Hydrogen's electron
affinity dominates the energetic balance in the charged systems and the extra
electron is predominantly attracted to a region nearby the chemisorbed atom.
The main consequences are: (i) the cancellation of the unpaired spin resulting
in a singlet ground-state, and (ii) a stronger interaction between hydrogen and
the graphene sheet.Comment: 11 pages, 8 figures, to be published in PR
Crystal structure and electronic states of tripotassium picene
The crystal structure of potassium doped picene with an exact stoichiometry
(K3C22H14, K3picene from here onwards) has been theoretically determined within
Density Functional Theory allowing complete variational freedom of the crystal
structure parameters and the molecular atomic positions. A modified herringbone
lattice is obtained in which potassium atoms are intercalated between two
paired picene molecules displaying the two possible orientations in the
crystal.Along the c-axis, organic molecules alternate with chains formed by
three potassium atoms. The electronic structureof the doped material resembles
pristine picene, except that now the bottom of the conduction band is occupied
by six electrons coming from the ionized K atoms (six per unit cell).
Wavefunctions remain based mainly on picene molecular orbitals getting their
dispersion from intralayer edge to face CH/pi bonding, while eigenenergies have
been modified by the change in the electrostatic potential. The small
dispersion along the c-axis is assigned to small H-H overlap. From the
calculated electronic density of states we expect metallic behavior for
potassium doped picene.Comment: Published version: 8 twocolumn pages, 7 color figures, 2 structural
.cif files include
Ab-initio calculation of the effect of stress on the chemical activity of graphene
Graphene layers are stable, hard, and relatively inert. We study how tensile
stress affects and bonds and the resulting change in the
chemical activity. Stress affects more strongly bonds that can become
chemically active and bind to adsorbed species more strongly. Upon stretch,
single C bonds are activated in a geometry mixing and ; an
intermediate state between and bonding. We use ab-initio
density functional theory to study the adsorption of hydrogen on large clusters
and 2D periodic models for graphene. The influence of the exchange-correlation
functional on the adsorption energy is discussed
Patterson Function from Low-Energy Electron Diffraction Measured Intensities and Structural Discrimination
Surface Patterson Functions have been derived by direct inversion of
experimental Low-Energy Electron Diffraction I-V spectra measured at multiple
incident angles. The direct inversion is computationally simple and can be used
to discriminate between different structural models. 1x1 YSi_2 epitaxial layers
grown on Si(111) have been used to illustrate the analysis. We introduce a
suitable R-factor for the Patterson Function to make the structural
discrimination as objective as possible. From six competing models needed to
complete the geometrical search, four could easily be discarded, achieving a
very significant and useful reduction in the parameter space to be explored by
standard dynamical LEED methods. The amount and quality of data needed for this
analysis is discussed.Comment: 5 pages, 4 figure
Diffusion of Hydrogen in Pd Assisted by Inelastic Ballistic Hot Electrons
Sykes {\it et al.} [Proc. Natl. Acad. Sci. {\bf 102}, 17907 (2005)] have
reported how electrons injected from a scanning tunneling microscope modify the
diffusion rates of H buried beneath Pd(111). A key point in that experiment is
the symmetry between positive and negative voltages for H extraction, which is
difficult to explain in view of the large asymmetry in Pd between the electron
and hole densities of states. Combining concepts from the theory of ballistic
electron microscopy and electron-phonon scattering we show that H diffusion is
driven by the -band electrons only, which explains the observed symmetry.Comment: 5 pages and 4 figure
Quantum mechanical analysis of the elastic propagation of electrons in the Au/Si system: application to Ballistic Electron Emission Microscopy
We present a Green's function approach based on a LCAO scheme to compute the
elastic propagation of electrons injected from a STM tip into a metallic film.
The obtained 2D current distribution in real and reciprocal space furnish a
good representation of the elastic component of Ballistic Electron Emission
Microscopy (BEEM) currents. Since this component accurately approximates the
total current in the near threshold region, this procedure allows --in contrast
to prior analyses-- to take into account effects of the metal band structure in
the modeling of these experiments. The Au band structure, and in particular its
gaps appearing in the [111] and [100] directions provides a good explanation
for the previously irreconcilable results of nanometric resolution and
similarity of BEEM spectra on both Au/Si(111) and Au/Si(100).Comment: 12 pages, 9 postscript figures, revte
Allelic variation observed at one microsatellite locus between the two synonym grape cultivars Black Currant and Mavri Corinthiaki
Research NoteBlack Currant and Mavri Corinthiaki are considered synonyms for Corinthe Noir, a parthenocarpic seedless raisin cultivar. No differences between them were found by RAPD analysis with 1 1 primers. They also have the same genotype in 15 out of 16 microsatellite loci, demonstrating the Black Currant and Mavri Corinthiaki are essentially identical. Nevertheless, a difference was observed in one allele at one locus (VVMD7): the Black Currant genotype is 240:246 while the Mavri Corinthiaki genotype is 240:248. A mutation in the microsatellite sequence might be responsible for that difference. Possible consequences of such mutations are discussed
Integration of biophysical connectivity in the spatial optimization of coastal ecosystem services
Ecological connectivity in coastal oceanic waters is mediated by dispersion
of the early life stages of marine organisms and conditions the structure of
biological communities and the provision of ecosystem services. Integrated
management strategies aimed at ensuring long-term service provision to society
do not currently consider the importance of dispersal and larval connectivity.
A spatial optimization model is introduced to maximise the potential provision
of ecosystem services in coastal areas by accounting for the role of dispersal
and larval connectivity. The approach combines a validated coastal circulation
model that reproduces realistic patterns of larval transport along the coast,
which ultimately conditions the biological connectivity and productivity of an
area, with additional spatial layers describing potential ecosystem services.
The spatial optimization exercise was tested along the coast of Central Chile,
a highly productive area dominated by the Humboldt Current. Results show it is
unnecessary to relocate existing management areas, as increasing no-take areas
by 10% could maximise ecosystem service provision, while improving the spatial
representativeness of protected areas and minimizing social conflicts. The
location of protected areas was underrepresented in some sections of the study
domain, principally due to the restriction of the model to rocky subtidal
habitats. Future model developments should encompass the diversity of coastal
ecosystems and human activities to inform integrative spatial management.
Nevertheless, the spatial optimization model is innovative not only for its
integrated ecosystem perspective, but also because it demonstrates that it is
possible to incorporate time-varying biophysical connectivity within the
optimization problem, thereby linking the dynamics of exploited populations
produced by the spatial management regime.Comment: 30 pages, 5 figures, 2 tables; 1 graphical abstract. In this version:
numbering of figures corrected, updated figure 2, typos corrected and
references fixe
- …