41 research outputs found

    Using a morpho-functional approach to assess phytoplankton dynamics in two adjacent high-mountain lakes: a 10-year survey

    Get PDF
    Colbricon Superiore and Inferiore are two small adjacent high-mountain lakes located in the Paneveggio Natural Park (Italy). The lakes differ by size and depth while sharing the same bedrock setting and catchment basin. Changes in the phytoplankton communities were studied over a 10-years period to individuate which environmental variables would determine the main differences in biotic assemblages across time and between the two lakes.The study was conducted with fortnightly samplings, assessing the density and biomass of algal taxa. Relationships of each of the biological variables with water temperature, pH, conductivity, transparency, water level, previous week rainfall, and relative water column stability were analyzed by correlation and regression analyses, cluster analysis, and by canonical correspondence analysis. The most significant variables resulted air temperature, hydrologic water level and pH. The smaller Colbricon Inferiore had about double the amount of phytoplankton density and biomass than did the larger Colbricon Superiore. The same lake had higher diversity and lower evenness in structure of the phytoplankton community. Notwithstanding their proximity each lake appears to follow independent species composition dynamics, however parallel patterns were interestingly revealed when data were analyzed by pooling taxa into morpho-functional groups. Morpho-functional groups (MFGs) 1b, 3a, 6b, 7a, 9b were differentially most abundant in warm periods, while 2c, 3b, 11c, 5e, 10a prevailed in cold years. MFGs 1b, 2d, 3a and 3b were more characteristic of Lake Colbricon Superiore, while Colbricon Inferiore preferentially featured MFGs 5a, 5e, 9a, 9b, 10a, 11a and 8a. The role of the meteo-climatic parameters was pointed out in driving the different patterns observed in the two lakes

    Semi-Automated Segmentation of Microbes in Color Images

    Get PDF
    ABSTRACT The goal of this work is to develop a system that can semi-automate the detection of multicolored foreground objects in digitized color images that contain complex and very noisy backgrounds. Although color image segmentation is considered a general problem, our application is microbiology where various colored stains are used to reveal information about the microbes without cultivation. Instead of providing a simple threshold, the proposed system offers an interactive environment whereby the user chooses multiple sample points to define the range of color pixels comprising the foreground microbes of interest. The system then uses the color and spatial distances of these target points to segment the microbes from the confusing background of pixels whose RGB values lie outside the newly defined range and finds the boundary of the foreground microbes using region-growing and mathematical morphology. Some other image processing methods are also applied to enhance the resultant image containing the colored microbes against a noise-free background. The prototype performs with 98% accuracy on a test set compared to manually edited ground truth data. The system described here will have many applications in image processing and analysis where one needs to segment typical pixel regions of similar but non-identical colors

    Nodule Organogenesis and Symbiotic Mutants of the Model Legume \u3ci\u3eLotus japonicus\u3c/i\u3e

    Get PDF
    A detailed microscopical analysis of the morphological features that distinguish different developmental stages of nodule organogenesis in wild-type Lotus japonicus ecotype Gifu B-129-S9 plants was performed, to provide the necessary framework for the evaluation of altered phenotypes of L. japonicus symbiotic mutants. Subsequently, chemical ethyl methanesulfonate (EMS) mutagenesis of L. japonicus was carried out. The analysis of approximately 3,000 M1 plants and their progeny yielded 20 stable L. japonicus symbiotic variants, consisting of at least 14 different symbiosis- associated loci or complementation groups. Moreover, a mutation affecting L. japonicus root development was identified that also conferred a hypernodulation response when a line carrying the corresponding allele (LjEMS102) was inoculated with rhizobia. The phenotype of the LjEMS102 line was characterized by the presence of nodule structures covering almost the entire root length (Nod++), and by a concomitant inhibition of both root and stem growth. A mutation in a single nuclear gene was shown to be responsible for both root and symbiotic phenotypes observed in the L. japonicus LjEMS102 line, suggesting that (a) common mechanism(s) regulating root development and nodule formation exists in legumes

    Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans

    Get PDF
    The biofertilization of crops with plant-growth-promoting microorganisms is currently considered as a healthy alternative to chemical fertilization. However, only microorganisms safe for humans can be used as biofertilizers, particularly in vegetables that are raw consumed, in order to avoid sanitary problems derived from the presence of pathogenic bacteria in the final products. In the present work we showed that Rhizobium strains colonize the roots of tomato and pepper plants promoting their growth in different production stages increasing yield and quality of seedlings and fruits. Our results confirmed those obtained in cereals and alimentary oil producing plants extending the number of non-legumes susceptible to be biofertilized with rhizobia to those whose fruits are raw consumed. This is a relevant conclusion since safety of rhizobia for human health has been demonstrated after several decades of legume inoculation ensuring that they are optimal bacteria for biofertilization

    CMEIAS-Aided Microscopy of the Spatial Ecology of Individual Bacterial Interactions Involving Cell-to-Cell Communication within Biofilms

    Get PDF
    This paper describes how the quantitative analytical tools of CMEIAS image analysis software can be used to investigate in situ microbial interactions involving cell-to-cell communication within biofilms. Various spatial pattern analyses applied to the data extracted from the 2-dimensional coordinate positioning of individual bacterial cells at single-cell resolution indicate that microbial colonization within natural biofilms is not a spatially random process, but rather involves strong positive interactions between communicating cells that influence their neighbors’ aggregated colonization behavior. Geostatistical analysis of the data provide statistically defendable estimates of the micrometer scale and interpolation maps of the spatial heterogeneity and local intensity at which these microbial interactions autocorrelate with their spatial patterns of distribution. Including in situ image analysis in cell communication studies fills an important gap in understanding the spatially dependent microbial ecophysiology that governs the intensity of biofilm colonization and its unique architecture

    Making Rice Production More Environmentally-Friendly

    No full text
    Irrigated rice production is one of the most essential agricultural activities for sustaining our global population, and at the same time, one of the agricultural sectors considered most eco-unfriendly. This is because it consumes a larger share of available freshwater resources, competing with varied ecosystems as well as other economic sectors; its paddy fields are responsible for significant emission of greenhouse gases; and the reliance on chemical fertilizers and various agrochemicals contributes to pollution of soils and water systems. These stresses on soils, hydrology and atmosphere are actually not necessary for rice production, which can be increased by modifying agronomic practices though more agroecologically-sound management practices. These, combined under the rubric of the System of Rice Intensification (SRI), can reduce requirements of irrigation water, chemical fertilizer and agrochemicals while increasing paddy yields and farmer’s net incomes. Here we discuss how irrigated rice production can be made more eco-friendly for the benefit of farmers, consumers and the environment. This is achieved by introducing practices that improve the growth and functioning of rice plants’ root systems and enhance the abundance, diversity and activity of beneficial soil organisms that live around plant roots and within the plants themselves as symbiotic endophytes
    corecore