216 research outputs found

    Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Full text link
    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 ±\pm 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 ±\pm 0.03 for Carbostyril-124, and 1.20 ±\pm 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.Comment: 7 pages, 9 figures, Submitted to Nuclear Instruments and Methods

    A Note on Neutron Capture Correlation Signals, Backgrounds, and Efficiencies

    Full text link
    A wide variety of detection applications exploit the timing correlations that result from the slowing and eventual capture of neutrons. These include capture-gated neutron spectrometry, multiple neutron counting for fissile material detection and identification, and antineutrino detection. There are several distinct processes that result in correlated signals in these applications. Depending on the application, one class of correlated events can be a background that is difficult to distinguish from the class that is of interest. Furthermore, the correlation timing distribution depends on the neutron capture agent and detector geometry. Here, we explain the important characteristics of the neutron capture timing distribution, making reference to simulations and data from a number of detectors currently in use or under development. We point out several features that may assist in background discrimination, and that must be carefully accounted for if accurate detection efficiencies are to be quoted.Comment: 7 pages, 7 figures; Submitted to Nuclear Instrument and Methods

    Transparency of 0.2% GdCl3 Doped Water in a Stainless Steel Test Environment

    Full text link
    The possibility of neutron and neutrino detection using water Cerenkov detectors doped with gadolinium holds the promise of constructing very large high-efficiency detectors with wide-ranging application in basic science and national security. This study addressed a major concern regarding the feasibility of such detectors: the transparency of the doped water to the ultraviolet Cerenkov light. We report on experiments conducted using a 19-meter water transparency measuring instrument and associated materials test tank. Sensitive measurements of the transparency of water doped with 0.2% GdCl3 at 337nm, 400nm and 420nm were made using this instrument. These measurements indicate that GdCl3 is not an appropriate dopant in stainless steel constructed water Cerenkov detectors.Comment: 17 pages, 11 figures, corrects typos, changes formatting, adds error bars to figure

    A search for gamma rays above 0.5 TeV from the southern radio pulsar PSR1706-44

    Get PDF
    A search for TeV gamma -rays from the isolated pulsar PSR1706-44 using the ground-based atmospheric Cerenkov imaging technique has been carried out. Analysis of data taken during 1993 and 1994 from the University of Adelaide's 37 pixel Cerenkov imaging telescope, with special attention paid to the effects of sky-noise differences between ON and OFF source regions, yielded an upper limit to the steady TeV gamma -ray emission. The 3sigma upper limit for energies above 0.5 TeV is 7.0(+/-0.7)x 10(-11) photons cm(-2) s(-1), consistent with the previously reported detection above ~ 1 TeV for steady emission.G.P. Rowell, S.A. Dazeley, P.G. Edwards, J.R. Patterson, and G.J. Thornto

    Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector

    Full text link
    Spontaneous and induced fission in Special Nuclear Material (SNM) such as 235U and 239Pu results in the emission of neutrons and high energy gamma-rays. The multiplicities of and time correlations between these particles are both powerful indicators of the presence of fissile material. Detectors sensitive to these signatures are consequently useful for nuclear material monitoring, search, and characterization. In this article, we demonstrate sensitivity to both high energy gamma-rays and neutrons with a water Cerenkov based detector. Electrons in the detector medium, scattered by gamma-ray interactions, are detected by their Cerenkov light emission. Sensitivity to neutrons is enhanced by the addition of a gadolinium compound to the water in low concentrations. Cerenkov light is similarly produced by an 8 MeV gamma-ray cascade following neutron capture on the gadolinium. The large solid angle coverage and high intrinsic efficiency of this detection approach can provide robust and low cost neutron and gamma-ray detection with a single device.Comment: 7 pages, 4 figures. Submitted to Nuclear Instruments and Methods,

    Final Report: Water-Based Neutron Detector Technology for Material Characterization Well Counters

    Full text link

    Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Full text link
    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3σ\sigma significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor.Comment: 11 pages, 9 figure
    corecore