434 research outputs found

    ELEVATED SERUM LEVELS OF TNF SOLUBLE RECEPTORS IN PATIENTS WITH POSITIVE ANTI-NEUTROPHIL CYTOPLASMIC ANTIBODIES

    Get PDF
    ANCA are found in various systemic vasculitis and are supposed to play a role in the pathogenesis of the disease, in cooperation with other factors such as cytokines. A total of 36 ANCA-positive and 10 ANCA-negative serum samples were analysed for the presence of TNF soluble receptors (TNF-sR), which are shed from the surface of activated cells and may act as TNF inhibitors. Of the ANCA-positive samples, 67% had elevated TNF-sR75 and 72% had elevated TNF-sR55 compared to ANCA-negative specimens (mean [S.E.] 18.7 [17.3] vs 3.6 [1.5] and 10.5 [9.7] vs 1.9 [0.7] ng/ml, P<0.01). Elevation of TNF-sR in patients with ANCA suggests that cytokines and their inhibitors are involved in the pathogenesis of ANCA-associated autoimmune disease

    New York's Southern Tier Landowners' Management for Early Successional Forest Habitat: Attitudes, Barriers and Motivations

    Full text link
    Click on the PDF for an Executive Summary and the full report. Visit the HDRU website for a complete listing of HDRU publications at: http://hdru.dnr.cornell.edu

    Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    Get PDF
    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session

    Guidelines on prophylaxis to prevent infective endocarditis

    Get PDF
    Infective endocarditis is a devastating disease with high morbidity and mortality. The link to oral bacteria has been known for many decades and has caused ongoing concern for dentists, patients and cardiologists. Since 2008, the UK has been out of step with the rest of the world where antibiotic prophylaxis is recommended for high-risk patients undergoing invasive dental procedures. Recent evidence that identified an increase in endocarditis incidence prompted a guideline review by NICE and the European Society for Cardiology – which produces guidance for the whole of Europe. Despite reviewing the same evidence they reached completely opposing conclusions. The resulting conflict of opinions and guidance is confusing and poses difficulties for dentists, cardiologists and their patients. Recent changes in the law on consent, however, may provide a patient-centred and pragmatic solution to these problems. This Opinion piece examines the evidence and opposing guidance on antibiotic prophylaxis in the context of the recent changes in the law on consent and provides a framework for how patients at risk of endocarditis might be managed in practice

    R-h-erythropoietin counteracts the inhibition of in vitro erythropoiesis by tumour necrosis factor alpha in patients with rheumatoid arthritis

    Get PDF
    Anaemia of chronic disease (ACD) is a common extra-articular manifestation of rheumatoid arthritis (RA). Tumour necrosis factor alpha (TNFα) plays an important role in the development of ACD. The objective of the present study was to assess inhibition of in vitro colony-forming unit erythrocyte (CFUe) and blast-forming unit erythrocyte (BFUe) growth by TNFα and to examine whether this suppression could be counteracted by adding increasing concentrations of recombinant human erythropoietin (EPO) (r-h-EPO) to bone marrow cultures of RA patients with ACD and without anaemia (controls). Bone marrow cells of RA patients with ACD and control patients were cultured. The cultures were incubated with increasing concentrations of r-h-EPO (0.25; 0.5; 1; 2 U/ml), each in combination with increasing quantities of TFNα (0; 50; 100; 200; 400 U/ml). CFUe and BFUe were assessed after 7 and 14 days, respectively. Dose-dependent inhibition of BFUe and CFUc by increasing concentrations of TNFα was observed in ACD and controls. Regarding CFUe (ACD patients) incubated with 0.25 U/ml EPO, 50 U/ml TNFα caused 28% suppression compared to cultures without TNFα. Increasing the concentration of r-h-EPO from 0.25 U/ml to 2 U/ml completely restored the number of CFUe. A similar pattern was observed in BFUe growth in both groups. These data demonstrated the suppressive effects of TNFα on erythropoiesis in vitro and that the suppresed erythropoiesis could be partly corrected by the addition of excess r-h-EPO to the cultures. No significant differences were observed between ACD and control RA patients. This in vitro model may help explain the clinical response to r-h-EPO therapy as documented in RA patients with ACD

    Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    Get PDF
    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, “outrunning” the host’s immune response in demyelinating plaques, thus continuously eliciting new lesions

    Anti-Arthritic Effects of Magnolol in Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes and in a Rat Arthritis Model

    Get PDF
    Fibroblast-like synoviocytes (FLS) play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs). The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5′-Diallyl-biphenyl-2,2′-diol), the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-κB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL)-1β-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E2, and matrix metalloproteinases (MMPs) by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1β-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1β (10 ng/mL)-induced cytokine expression in a concentration-dependent manner (2.5–25 µg/mL). In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1β-induced activation of the IKK/IκB/NF-κB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg) significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases
    corecore