27 research outputs found

    Crystal structure of the feruloyl esterase from Lentilactobacillus buchneri reveals a novel homodimeric state

    Get PDF
    Ferulic acid is a common constituent of the plant cell-wall matrix where it decorates and can crosslink mainly arabinoxylans to provide structural reinforcement. Microbial feruloyl esterases (FAEs) specialize in catalyzing hydrolysis of the ester bonds between phenolic acids and sugar residues in plant cell-wall polysaccharides such as arabinoxylan to release cinnamoyl compounds. Feruloyl esterases from lactic acid bacteria (LAB) have been highlighted as interesting enzymes for their potential applications in the food and pharmaceutical industries; however, there are few studies on the activity and structure of FAEs of LAB origin. Here, we report the crystal structure and biochemical characterization of a feruloyl esterase (LbFAE) from Lentilactobacillus buchneri, a LAB strain that has been used as a silage additive. The LbFAE structure was determined in the absence and presence of product (FA) and reveals a new type of homodimer association not previously observed for fungal or bacterial FAEs. The two subunits associate to restrict access to the active site such that only single FA chains attached to arabinoxylan can be accommodated, an arrangement that excludes access to FA cross-links between arabinoxylan chains. This narrow specificity is further corroborated by the observation that no FA dimers are produced, only FA, when feruloylated arabinoxylan is used as substrate. Docking of arabinofuranosyl-ferulate in the LbFAE structure highlights the restricted active site and lends further support to our hypothesis that LbFAE is specific for single FA side chains in arabinoxylan

    Enhancing methane production from lignocellulosic biomass by combined steam‑explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii

    Get PDF
    Background: Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). Results: Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/ g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/ g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. Conclusion: Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass

    Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins.

    No full text
    Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway

    Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating

    No full text
    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer. The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 kDa membrane with sponge-like sublayer to immobilize laccase with dopamine coating, the trade-off between permeability and enzyme loading was broken, and enzyme loading reached 44.5% without any permeability loss. After 85 days of storage and reuse 14 times, more than 80% of the immobilized laccase activity was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic membrane is promising for cascade catalytic reactions

    Data_Sheet_1_Crystal structure of the feruloyl esterase from Lentilactobacillus buchneri reveals a novel homodimeric state.PDF

    No full text
    Ferulic acid is a common constituent of the plant cell-wall matrix where it decorates and can crosslink mainly arabinoxylans to provide structural reinforcement. Microbial feruloyl esterases (FAEs) specialize in catalyzing hydrolysis of the ester bonds between phenolic acids and sugar residues in plant cell-wall polysaccharides such as arabinoxylan to release cinnamoyl compounds. Feruloyl esterases from lactic acid bacteria (LAB) have been highlighted as interesting enzymes for their potential applications in the food and pharmaceutical industries; however, there are few studies on the activity and structure of FAEs of LAB origin. Here, we report the crystal structure and biochemical characterization of a feruloyl esterase (LbFAE) from Lentilactobacillus buchneri, a LAB strain that has been used as a silage additive. The LbFAE structure was determined in the absence and presence of product (FA) and reveals a new type of homodimer association not previously observed for fungal or bacterial FAEs. The two subunits associate to restrict access to the active site such that only single FA chains attached to arabinoxylan can be accommodated, an arrangement that excludes access to FA cross-links between arabinoxylan chains. This narrow specificity is further corroborated by the observation that no FA dimers are produced, only FA, when feruloylated arabinoxylan is used as substrate. Docking of arabinofuranosyl-ferulate in the LbFAE structure highlights the restricted active site and lends further support to our hypothesis that LbFAE is specific for single FA side chains in arabinoxylan.</p

    A Highly Efficient Recombinant Laccase from the Yeast <i>Yarrowia lipolytica</i> and Its Application in the Hydrolysis of Biomass

    No full text
    <div><p>A modified thermal asymmetric interlaced polymerase chain reaction was performed to obtain the first yeast laccase gene (YlLac) from the isolated yeast <i>Yarrowia lipolytica</i>. The 1557-bp full-length cDNA of YlLac encoded a mature laccase protein containing 519 amino acids preceded by a signal peptide of 19 amino acids, and the YlLac gene was expressed in the yeast <i>Pichia pastoris</i>. YlLac is a monomeric glycoprotein with a molecular mass of ~55 kDa as determined by polyacrylamide-gel electrophoresis. It showed a higher catalytic efficiency towards 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (<i>k<sub>cat</sub>/K<sub>m</sub></i> = 17.5 s<sup>-1</sup> μM<sup>-1</sup>) and 2,6-dimethoxyphenol (<i>k<sub>cat</sub>/K<sub>m</sub></i> = 16.1 s<sup>-1</sup> μM<sup>-1</sup>) than other reported laccases. The standard redox potential of the T1 site of the enzyme was found to be 772 mV. The highest catalytic efficiency of the yeast recombinant laccase, YlLac, makes it a good candidate for industrial applications: it removes phenolic compounds in acid-pretreated woody biomass (<i>Populus balsamifera</i>) and enhanced saccharification.</p></div

    Strains, plasmids, and oligonucleotide primers used in this study.

    No full text
    <p><sup><i>a</i></sup>The XhoI site is in small letters.</p><p><sup><i>b</i></sup>The XbaI site is in small letters.</p><p><sup><i>c</i></sup>The KpnI site is in small letters.</p><p>W = A / T, S = G / C, N = A/T / G / C</p><p>Strains, plasmids, and oligonucleotide primers used in this study.</p
    corecore