15 research outputs found

    Improved decision for a resource-efficient fusion scheme in cooperative spectrum sensing

    Get PDF
    Paper presented at at 2015 International Workshop on Telecommunications (IWT), 14th to 17th of June, Santa Rita do Sapucai, Brazil. Abstract Recently, a novel decision fusion scheme for cooperative spectrum sensing was proposed, aiming at saving resources in the reporting channel transmissions. Secondary users are allowed to report their local decisions through the symbols of binary modulations, at the same time and with the same carrier frequencies. As a consequence, the transmitted symbols add incoherently at the fusion center, forming a larger set of symbols in which a subset is associated to the presence of the primary signal, and another subset is associated to the absence of such a signal. A Bayesian decision criterion with uniform prior was applied for discriminating these subsets. In this paper we propose a modified decision rule in which the target probabilities of detection and false alarm are taken into account to produce a large performance improvement over the original decision criterion. This improvement comes with practically no cost in complexity and does not demand the knowledge of any additional information when compared to the original rule

    Energy efficient scheme based on simultaneous transmission of the local decisions in cooperative spectrum sensing

    Get PDF
    A common concern regarding cooperative spectrum sensing (CSS) schemes is the occupied bandwidth and the energy consumption during the transmissions of sensing information to the fusion center over the reporting control channels. This concern is intensified if the number of cooperating secondary users in the network is large. This article presents a new fusion strategy for a CSS scheme, aiming at increasing the energy efficiency of a recently proposed bandwidth-efficient fusion scheme. Analytical results and computational simulations unveil a high increase in energy efficiency when compared with the original approach, yet achieving better performances in some situations, and lower implementation complexity

    Resource-efficient fusion with pre-compensated transmissions for cooperative spectrum sensing

    Get PDF
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. Recently, a novel fusion scheme for cooperative spectrum sensing was proposed for saving resources in the control channel. Secondary users (SUs) simultaneously report their decisions using binary modulations with the same carrier frequencies. The transmitted symbols add incoherently at the fusion centre (FC), leading to a larger set of symbols in which a subset is associated with the presence of the primary user (PU) signal, and another subset is associated with the absence of such a signal. The decision criterion applied for discriminating these subsets works under the assumption that the channel gains are known at the FC. In this paper, we propose a new simultaneous transmission and decision scheme in which the task of channel estimation is shifted from the FC to the SUs, without the need for feeding-back of the estimates to the FC. The estimates are used at the SUs to pre-compensate for the reporting channel phase rotations and to partially compensate for the channel gains. This partial compensation is the result of signal clipping for peak-to-average power ratio (PAPR) control. We show, analytically and with simulations, that this new scheme can produce large performance improvements, yet reduces the implementation complexity when compared with the original one

    Modified Gini Index Detector for Cooperative Spectrum Sensing over Line-of-Sight Channels

    No full text
    Recently, the Gini index detector (GID) has been proposed as an alternative for data-fusion cooperative spectrum sensing, being mostly suitable for channels with line-of-sight or dominant multi-path components. The GID is quite robust against time-varying noise and signal powers, has the constant false-alarm rate property, can outperform many the state-of-the-art robust detectors, and is one of the simplest detectors developed so far. The modified GID (mGID) is devised in this article. It inherits the attractive attributes of the GID, yet with a computational cost far below the GID. Specifically, the time complexity of the mGID obeys approximately the same run-time growth rate of the GID, but has a constant factor approximately 23.4 times smaller. Equivalently, the mGID takes approximately 4% of the computation time spent to calculate the GID test statistic, which brings a huge reduction in the latency of the spectrum sensing process. Moreover, this latency reduction comes with no performance loss with respect to the GID

    Pietra-Ricci Index Detector for Centralized Data Fusion Cooperative Spectrum Sensing

    No full text

    Implementation-Oriented Model for Centralized Data-Fusion Cooperative Spectrum Sensing

    No full text

    On The Efficient Generation Of Alpha-kappa-mu And Alpha-eta-mu White Samples With Applications

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)This paper is concerned with a simple and highly efficient random sequence generator for uncorrelated alpha-kappa-mu and alpha-eta-mu variates. The algorithm may yield an efficiency of almost 100%, and this high efficiency can be reached for all special cases such as alpha-mu, kappa-mu, eta-mu, Nakagami-m, Nakagami-q, Weibull, Hoyt, Rayleigh, Rice, Exponential, and the One-Sided Gaussian. This generator is implemented via the rejection technique and allows for arbitrary fading parameters. The goodness-of-fit is measured using the Kolmogorov-Smirnov and Anderson-Darling tests. The maximum likelihood parameter estimation for the kappa-mu distribution is proposed and verified against true values of the parameters chosen in the generator. We also provide two important applications for the random sequence generator, the first one dealing with the performance assessment of a digital communication system over the alpha-kappa-mu and alpha-eta-mu fading channels and the second one dealing with the performance assessment of the spectrum sensing with energy detection over special cases of these channels. Theoretical and simulation results are compared, validating again the accuracy of the generators.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq [501281/2013-4

    Multiantenna Spectrum Sensing in the Presence of Multiple Primary Users over Fading and Nonfading Channels

    Get PDF
    The basis of this paper is Wei and Tirkkonen, 2012, in which expressions for the key performance metrics of the sphericity test applied to the multiantenna cooperative spectrum sensing of multiple primary transmitters in cognitive radio networks over nonfading channels are provided. The false alarm and the detection probabilities were derived in Wei and Tirkkonen, 2012, based on approximations obtained by matching the moments of the test statistics to the Beta distribution. In this paper we show that the model adopted in Wei and Tirkkonen, 2012, does not apply directly to fading channels, yet being considerably inaccurate for some system parameters and channel conditions. Nevertheless, we show that the original expressions from Wei and Tirkkonen, 2012, can be simply and accurately applied to a modified model that considers fixed or time-varying channels with any fading statistic. We also analyze the performance of the sphericity test and other competing detectors with a varying number of primary transmitters, considering different situations in terms of the channel gains and channel dynamics. Based on our results, we correct several interpretations from Wei and Tirkkonen, 2012, in what concerns the performance of the detectors, both over a fixed-gain additive white Gaussian noise channel and over a time-varying Rayleigh fading channel
    corecore