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This paper is concerned with a simple and highly efficient random sequence generator for uncorrelated 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 variates.
The algorithm may yield an efficiency of almost 100%, and this high efficiency can be reached for all special cases such as
𝛼-𝜇, 𝜅-𝜇, 𝜂-𝜇, Nakagami-m, Nakagami-q, Weibull, Hoyt, Rayleigh, Rice, Exponential, and the One-Sided Gaussian.This generator
is implemented via the rejection technique and allows for arbitrary fading parameters. The goodness-of-fit is measured using
the Kolmogorov-Smirnov and Anderson-Darling tests. The maximum likelihood parameter estimation for the 𝜅-𝜇 distribution
is proposed and verified against true values of the parameters chosen in the generator. We also provide two important applications
for the random sequence generator, the first one dealing with the performance assessment of a digital communication system over
the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 fading channels and the second one dealing with the performance assessment of the spectrum sensing with
energy detection over special cases of these channels.Theoretical and simulation results are compared, validating again the accuracy
of the generators.

1. Introduction

In nearly all fields of science, simulation is a strikingly
powerful tool widely adopted to help develop a better under-
standing of some phenomenon under investigation. Particu-
larly in engineering, it is used, for instance, to successfully
test equipment, algorithms, and techniques, and, to some
extent and whenever applicable, to avoid or minimize time-
consuming, costly, and inexhaustible field trials. Wireless
communications are no exception and in this challenging,
lively, and unkind area, with systems becoming increasingly
more complex, both industry and academy engage them-
selves in developing simulators. Such simulators for wireless
communications almost certainly include a block for the
fading channel.

The fading channel can be described by a number of
models. Among them, the general models, namely, 𝛼-𝜅-𝜇,
𝛼-𝜂-𝜇 [1], and some particular cases such as 𝜅-𝜇 [2], 𝜂-𝜇
[2], and 𝛼-𝜇 [3], have been gaining wide acceptance [4–
25]. Their flexibility renders them adaptable to situations in
which none of the traditional distributions yield good fit
[2, 3]. In addition, their applicability has been recognized
in practical and real scenarios. Field measurements carried
out in diverse propagation environments have shown that,
in many situations, these models better accommodate the
statistical variations of the propagated signal [1, Section VII],
[2, 7–10, 26]. In this sense, developing and ameliorating
methods in order to simulate the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 fading
models and their special cases for arbitrary values of their
parameters are of paramount importance. One first step in
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such a direction is to generate uncorrelated samples and then,
if required, correlate them.

This paper is concerned with the generation of uncorre-
lated samples of 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 fading models for arbitrary
values of their parameters. Two largely applied methods in
this case are the inversion method and the rejection method.
The former involves the knowledge of the inverse of the
cumulative distribution function (cdf) of the variate, which is
either not always available or cannot be easily implemented,
but, on the other hand, is highly efficient.The latter is general
and applies to any variate but can be rather inefficient.

A useful method for generating independent 𝜅-𝜇, 𝜂-
𝜇, and 𝛼-𝜇 sequences with an arbitrary fading parameter
was recently investigated in [27]. The method is reported to
achieve an efficiency higher than 80% for 𝜂-𝜇 and 87.5% for
𝜅-𝜇. More interestingly, a transformation was proposed in
which, from an 𝛼-𝜇 sequence, a new 𝛼-𝜇 sequence can be
obtained with an almost 100% efficiency.

In this paper, we extend the applicability of the approach
in [28] to provide an easy-to-implement and highly effi-
cient algorithm that generates 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 uncorrelated
sequences for arbitrary values of their parameters. A simple
transformation is also proposed, in which, from an 𝛼-𝜅-𝜇
or 𝛼-𝜂-𝜇 sequence, a new 𝛼-𝜅-𝜇 or 𝛼-𝜂-𝜇 sequence can be
obtained with an almost 100% efficiency. To the best of the
authors’ knowledge, the results reported here are new.

With the aim of quantifying the performance of the
random sequence generators, we compare empirical cdfs
to hypothesized ones by carrying out goodness-of-fit
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD)
tests. We also generate a large number of 𝜅-𝜇 random
variables, as a particular case of the 𝛼-𝜅-𝜇 generator, and
perform the maximum likelihood (ML) estimation of the
parameters 𝜅 and 𝜇. We then verify these estimates against
true values of 𝜅 and 𝜇 defined in the generator. In this
context, we use the maximum likelihood technique as its
estimators have notable properties, mainly for large sample
size [29]. In fact, under regularity conditions, for large
sample size ML estimators are consistent and have normal
distribution with variance attaining the Cramér-Rao lower
bound (CRLB) [29].

In order to demonstrate the usefulness of the proposed
method, we provide theoretical and simulated bit error rates
of a coherent binary phase-shift keying (BPSK) modulation
over the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 fading channels. We also provide
the performance assessment of the spectrum sensing with
energy detection over special cases of these channels, namely,
the 𝜅-𝜇 and 𝜂-𝜇 channels.

The remaining of the paper is organized as follows.
Section 2 presents the preliminary proposed algorithm and
briefly describes the general distributions that are the focus
of this paper. Numerical results, including the goodness-of-
fit test, and their interpretations are presented in Section 3.
In Section 4 a near-100% efficient and definitive algorithm
for generating 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 variates is discussed in
detail. Section 5 verifies the 𝛼-𝜅-𝜇 generator performance
by checking ML parameter estimates from 𝜅-𝜇 random
samples against true values of the distribution parameters. In

Section 6 the average error probability of the BPSK modula-
tion over the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 channels and the performance
of the spectrum sensing over the 𝜅-𝜇 and 𝜂-𝜇 channels are
presented. Some conclusions are drawn in Section 7.

2. Proposed Algorithm: Preliminary Results

In this section we present a preliminary proposed algorithm.
However, in Section 4 the definitive and more efficient
algorithm will be presented.

The majorizing hat function 𝑔(𝜌) used here is given as
[30]

𝑔 (𝜌) = 𝑐ℎ (𝜌) = 𝑏 exp [−𝑎(𝜌 − 𝜌
0
)
2
] ≥ 𝑓
𝑥-𝑦-𝑧
𝑃

(𝜌) , (1)

where ℎ (𝜌) is the majorizing density, 𝑎, 𝑏, and 𝜌
0
are

coefficients to be obtained for the specific fading model so
that 𝑔 (𝜌) can majorize 𝑓𝑥-𝑦-𝑧

𝑃
(𝜌) for all 𝜌, and 𝑓𝑥-𝑦-𝑧P (𝜌) is the

desired probability density function (pdf) given in terms of
the normalized envelope 𝜌, with 𝑥-𝑦-𝑧 standing for 𝛼-𝜅-𝜇 or
𝛼-𝜂-𝜇. The parameter 𝑐 is given in an exact form as
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)] , (2)

where erf(⋅) is the error function. The coefficient 𝜌
0
is

obtained as the solution of (𝑑/𝑑𝜌)𝑓𝑥-𝑦-𝑧
𝑃

(𝜌) = 0. In all cases,
the parameter 𝜌

0
can be easily found numerically using well-

known software tools such as Mathematica or MATLAB.The
coefficient 𝑏 is found as the mode of the pdf; that is, 𝑏 =
𝑓
𝑥-𝑦-𝑧
𝑃

(𝜌
0
). Finally, the coefficient 𝑎 is found as
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} . (3)

Algorithm 1 summarizes the steps for generating the desired
sequences. The probability of acceptance in step 7 is 1/𝑐.
U(0, 1) is the uniform distribution over the unit interval
(0, 1]. The rejection method is well known and it is described
in detail in [31]. Notice that the function ℎ(𝜌) has the form
of a truncated-Gaussian density. Random variables with pdf
ℎ (𝜌) can be generated in a fast and accurateway by truncated-
Gaussian random variables generation methods (e.g., [32]).

2.1.The 𝛼-𝜅-𝜇Distribution. For a fading signal with envelope
𝑅 and normalized envelope 𝑃 = 𝑅/ 𝛼√E(𝑅𝛼), the normalized
𝛼-𝜅-𝜇 envelope pdf is given as [1]

𝑓
𝛼-𝜅-𝜇
𝑃

(𝜌) =

𝛼𝜅
(1−𝜇)/2

(1 + 𝜅)
(1+𝜇)/2

𝜇𝜌
(𝛼(1+𝜇)/2)−1

exp [𝜇 (𝜅 + 𝜌𝛼 + 𝜅𝜌𝛼)]

× 𝐼
𝜇−1
(2√𝜅 (1 + 𝜅)𝜇𝜌

𝛼/2
) ,

(4)

where 𝛼 > 0 is a parameter describing the nonlinearity of
the propagation medium, 𝜅 > 0 is the ratio between the total
power of the dominant components and the total power of the
scattered waves, 𝜇 > 0 is related to the number of multipath
waves, and 𝐼](⋅) is the modified Bessel function of first kind
and order ] [33].
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(1) Define the distribution parameters
(2) Find 𝜌

0
, solving (𝑑/𝑑𝜌)𝑓𝑥-𝑦-𝑧

𝑃
(𝜌) = 0

(3) Find 𝑏 = 𝑓𝑥-𝑦-𝑧
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)

(4) Find 𝑎 = min {(1/(𝜌 − 𝜌
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(𝜌
0
) /𝑓
𝑥-𝑦-𝑧
𝑃

(𝜌))}, with 0 ≤ 𝜌 < ∞
(5) Generate 𝑌 from the distribution with density function ℎ(𝜌) = 𝑏 exp [−𝑎(𝜌 − 𝜌

0
)
2
] /𝑐

(6) Generate 𝑈 from a 𝑈(0, 1) distribution
(7) if 𝑈 ≤ 𝑓𝑥-𝑦-𝑧

𝑃
(𝑌)/𝑐ℎ(𝑌) then

(8) 𝑃 = 𝑌 as the desired sample
(9) else
(10) Return to Step 5
(11) end if

Algorithm 1: Preliminary algorithm.

In particular, the first derivative of the 𝛼-𝜅-𝜇 distribution
is given by
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(5)

2.2.The 𝛼-𝜂-𝜇Distribution. For a fading signal with envelope
𝑅 and normalized envelope 𝑃 = 𝑅/

𝛼

√E(𝑅𝛼), the 𝛼-𝜂-𝜇
normalized envelope pdf is given as [1]
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where 𝜂 ≥ 0 is the ratio between the in-phase scattered
wave and the quadrature scattered wave and Γ(⋅) is the Euler
Gamma function [33].

In particular, the first derivative of the 𝛼-𝜂-𝜇 distribution
is given by
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3. Numerical Results

In Figure 1, the empirical pdfs generated by the proposed
method using 220 samples are contrasted with the theoretical
density for different values of 𝜅, 𝜂, 𝜇, and 𝛼. In this figure,
the solid lines correspond to the theoretical results whereas
the symbols correspond to the generated random variates.
The excellent agreement between theoretical and simulated
results can be noticed.

3.1. Efficiency. Theacceptance proportion, or efficiency, is the
performance measure of the acceptance-rejection method.
It is the ratio between the number of samples accepted by
the method and the total number of samples generated from
the respective hat function (majorizing function). Figures 2
and 3 depict the efficiency curves for different values of the
pdf parameters using the proposed algorithm. Hereafter, the
solid lines correspond to the theoretical results whereas the
symbols refer to the simulation results.
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Figure 1: Simulated and theoretical 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 densities.
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Figure 2: Rejection method efficiency for the 𝛼-𝜅-𝜇 distribution.

The efficiency of the proposed method for the 𝛼-𝜅-𝜇
distribution is shown in Figure 2. Notice that the acceptance
proportion decreases with the increasing of the parameter 𝜅.
As can be seen, the efficiency is rather small for 𝛼 below 2
but increases rapidly as 𝛼 reaches 2. The efficiency increases
even further to reach almost 100% for 𝛼 around 2.2. The
well-known Nakagami-𝑚 distribution is obtained by setting
𝜅 → 0 and 𝛼 = 2 in the 𝛼-𝜅-𝜇 distribution in which case
𝜇 = 𝑚 and the efficiency is around 75%, in agreement with
[30].

The efficiency of the proposed method for the 𝛼-𝜂-𝜇
distribution is shown in Figure 3. Notice that the acceptance
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Figure 3: Rejection method efficiency for the 𝛼-𝜂-𝜇 distribution.

proportion increases with the increasing of the 𝜂 parameter
for a fixed 𝛼 > 4. The Nakagami-𝑚 distribution is obtained
by setting 𝛼 = 2, for 𝜂 → 1, in which case 𝜇 = 𝑚/2, or,
equivalently, for 𝜂 → 0, in which case 𝜇 = 𝑚 in the 𝛼-𝜂-
𝜇 distribution. In this case, once again, the efficiency stays
around 75%, in agreement with [30].

In all the cases, the acceptance ratio does not vary
significantly with the variation of 𝜇. In both, Figures 2 and 3,
the acceptance proportion decreases with the increase of the
fading parameter 𝛼. This is a purely mathematical problem,
in which we want to find a function (hat function) which
is as close as possible to the distribution whose samples
are to be generated. As it happens, the variations of the
parameters provoke a change in the shape of the curves,
which depart from that of the hat function, leading to an
increase or a decrease in the efficiency. It is noteworthy that
the samples are drawn with arbitrary parameters 𝛼, 𝜅, 𝜂,
and 𝜇. Clearly, the acceptance proportion achieved using the
proposed majorizing density is higher than when compared
with a traditional uniform majorizing density.

A strikingly interesting result is shown next. Refer to
Figure 2 for the efficiency of generating the 𝛼-𝜅-𝜇 random
variable. It can be noticed that the efficiency reaches almost
100% for 𝛼 ≅ 2.2. For instance, with 𝛼 = 2.2, 𝜅 = 3.5, and
𝜇 = 4.25 the efficiency is 99.76%. A similar conclusion can
be found for the efficiency of generating the 𝛼-𝜂-𝜇 random
variable plotted in Figure 3. In this case the efficiency reaches
almost 100% for 𝛼 ≅ 3.5.

Figure 4 depicts the efficiency curves for the 𝛼-𝜅-𝜇 over
different values of 𝜅 and 𝜇 with fixed 𝛼 = 2.2. Notice that the
efficiency starts above 85% (𝜅 = 0, 𝛼-𝜇 case with 𝛼 = 2.2),
increases, and decreases but is still above 95% for 𝜇 > 1.

Figure 5 plots the efficiency curves for the 𝛼-𝜂-𝜇 over
different values of 𝜂 and 𝜇 using 𝛼 = 3.5. Notice that the
efficiency starts above 95% (𝜂 = 1, 𝛼-𝜇 case with 𝛼 = 3.5),
increases, and decreases but is still above 92.5% for 𝜇 > 1.
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3.2. Goodness-of-Fit Test. The difference between the theo-
retical and experimental distributions is minimal as visually
perceived in Figure 1. However, in order to objectively quan-
tify the performance of the random sequence generator for
the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 fading distributions, the Kolmogorov-
Smirnov (KS) test is performed so that the empirical cdf and
the hypothesized cdf are compared. As found in the literature
(e.g., [29]), the measure of the fit accuracy is given by the
𝑃-value. Table 1 reports 𝑃-values obtained for the generated
sequences with different values of 𝜅, 𝜂, 𝜇, and 𝛼. In all of the
cases, 𝑃 > 0.05, unveiling an excellent goodness-of-fit test
result [31].

Table 1: 𝑃 values of the KS test.

Parameters 𝑃 value
𝛼 = 2.25, 𝜅 = 3.50, 𝜇 = 1.75 0.8218
𝛼 = 2.25, 𝜅 = 3.75, 𝜇 = 2.50 0.6293
𝛼 = 1.50, 𝜂 = 3.25, 𝜇 = 1.50 0.3654
𝛼 = 1.50, 𝜂 = 2.75, 𝜇 = 3.25 0.6745

It is well known that the Anderson-Darling test gives
more weight to the tails than the KS test. Also, because
the Anderson-Darling test is specific for the hypothesized
distribution, this test is likely to be more powerful than the
traditional KS test [31]. For these reasons, we additionally
have performed the Anderson-Darling goodness-of-fit test,
with the objective of confirming the adherence of the gen-
erated random numbers also in the tails of their probability
distributions. In general, critical values of the Anderson-
Darling test statistic depend on the specific distribution being
tested.Wehave tested two particular cases of the𝛼-𝜅-𝜇 and𝛼-
𝜂-𝜇 distributions, since for these cases the exact critical values
and, consequently, the 𝑃 value are calculated analytically.The
test has been performed for Weibull distribution (𝛼-𝜅-𝜇 with
𝛼 = 3.5, 𝜅 = 0, and𝜇 = 1) and for the exponential distribution
(𝛼-𝜅-𝜇 with 𝛼 = 1, 𝜅 = 0, and 𝜇 = 1). In the latter case the
𝑃 value was 0.8352. In the first one the 𝑃 value was 0.5236.
These values reveal the adherence of the generated random
numbers also in the tails of their probability distributions.

4. Main Result: A Near-100% Efficient
Algorithm for Generating 𝛼-𝜅-𝜇, 𝛼-𝜂-𝜇
Variates, and Their Particular Cases

A modified procedure for a high-efficient and definitive
algorithm can be noticed in this section. Let us consider
first the 𝛼-𝜅-𝜇 density. From (12) of [3], it is possible to
conclude that in the case of the 𝛼-𝜅-𝜇 distribution, for any set
(𝛼
1
, 𝜅, 𝜇) and (𝛼

2
, 𝜅, 𝜇), the following holds: 𝑃𝛼1

𝛼
1
-𝜅-𝜇 = 𝑃

𝛼
2

𝛼
2
-𝜅-𝜇.

That is, given an𝛼-𝜅-𝜇distributionwith parameters (𝛼
1
, 𝜅, 𝜇),

another 𝛼-𝜅-𝜇 distribution with parameters (𝛼
2
, 𝜅, 𝜇), can be

obtained by following the given transformation. In particular,
knowing that an efficiency of almost 100% is achieved for 𝛼-
𝜅-𝜇 samples with 𝛼 = 2.2 (see Figure 4), a transformation
of the kind 𝑃𝛼

𝛼-𝜅-𝜇 = 𝑃
2.2

2.2-𝜅-𝜇 can be used to attain any 𝛼-𝜅-𝜇
samples with this high efficiency.

Considering the 𝛼-𝜂-𝜇 distribution, for any set (𝛼
1
, 𝜂, 𝜇)

and (𝛼
2
, 𝜂, 𝜇), the following holds: 𝑃𝛼1

𝛼
1
-𝜂-𝜇 = 𝑃

𝛼
2

𝛼
2
-𝜂-𝜇. That

is, given an 𝛼-𝜂-𝜇 distribution with parameters (𝛼
1
, 𝜂, 𝜇),

another 𝛼-𝜂-𝜇 distribution with parameters (𝛼
2
, 𝜂, 𝜇) can be

obtained by following the given transformation. Specifically,
knowing that an efficiency of almost 100% is achieved for 𝛼-
𝜂-𝜇 samples with 𝛼 = 3.5 (see Figure 5), a transformation of
the kind 𝑃𝛼

𝛼-𝜂-𝜇 = 𝑃
3.5

3.5-𝜂-𝜇 can be used to achieve any 𝛼-𝜂-𝜇
samples with this high efficiency. In such cases, the efficiency
is kept constant and close to 100%, throughout the variation
of the parameters.

Because 𝜅-𝜇 and 𝜂-𝜇 are particular cases of the 𝛼-𝜅-
𝜇 and 𝛼-𝜂-𝜇 distributions (if we set 𝛼 = 2), respectively,
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notice that for both, 𝜅-𝜇 and 𝜂-𝜇 distributions, the same high
efficiency can be attained. In other words, in order to generate
𝜅-𝜇 samples with an almost 100% efficiency, the best choice
is to generate 𝛼-𝜅-𝜇 samples with 𝛼 = 2.2 and make the
transformation 𝑃2

2-𝜅-𝜇 = 𝑃
2.2

2.2-𝜅-𝜇. For the 𝜂-𝜇 case, 𝑃2
2-𝜂-𝜇 =

𝑃
3.5

3.5-𝜂-𝜇.
In the sameway, one can conclude that the high efficiency

can be reached for all the particular cases of 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇
distributions such as the well-known Nakagami-m, Rayleigh,
and Weibull densities. All the particular cases of the 𝛼-𝜅-𝜇
and 𝛼-𝜂-𝜇 distributions can be found in [1, Section VI].

The steps for generating the desired sequences using the
definitive algorithm are summarized in the Algorithm 2.

5. 𝜅-𝜇 Random Variable Generation and
Maximum-Likelihood Parameter Estimation

The generator ability in providing random samples following
a given distribution can be alternatively verified by generating
a large number of random variables and obtaining maximum
likelihood (ML) estimates for the distribution parameters.
In this section, as a particular case of the 𝛼-𝜅-𝜇 generator,
we generated sample data sets of 𝑛 independent identically
distributed (i.i.d.) 𝜅-𝜇 random variables. Then, for each data
set, we applied the ML parameter estimation and verified the
estimates against true values of the generator parameters.

5.1. 𝜅-𝜇 Maximum Likelihood Parameter Estimation. Let
P = [𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
] be 𝑛 random variables representing

normalized envelope observations 𝑃
1
= 𝜌
1
, 𝑃
2
= 𝜌
2
, . . . , 𝑃

𝑛
=

𝜌
𝑛
following a common 𝜅-𝜇 distribution. We assume that

this sample data set has a joint probability density function
given by 𝑓P(𝜌1, 𝜌2, . . . , 𝜌𝑛; 𝜃), where 𝜃 = [𝜃

1
, 𝜃
2
] = [𝜅, 𝜇]

is the parameter vector to be estimated. The ML estimator
Θ̂ML can be determined maximizing the likelihood function
𝑓P(𝜌1, 𝜌2, . . . , 𝜌𝑛; 𝜃) as [29]

Θ̂ML = sup
𝜃

𝑓P (𝜌; 𝜃) . (8)

In particular, assuming 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
as i.i.d. random vari-

ables and with [2, Equation (1)], the random samples have
a joint pdf given by

𝑓P (𝜌; 𝜃) =
𝑛

∏

𝑖=1

2𝜇(1 + 𝜅)
(𝜇+1)/2

𝜅
(𝜇−1)/2 exp (𝜅𝜇)

𝜌
𝜇

𝑖
exp [−𝜇 (1 + 𝜅) 𝜌2

𝑖
]

× 𝐼
𝜇−1
(2𝜇√𝜅 + 𝜅

2
𝜌
𝑖
) .

(9)

Equivalently, we can maximize the log-likelihood function
𝐿(𝜌; 𝜃) = ln[𝑓P(𝜌; 𝜃)], which follows directly from (9) as

𝐿 (𝜌; 𝜃) = 𝑛 ln(
2𝜇(1 + 𝜅)

(𝜇+1)/2

𝜅
(𝜇−1)/2 exp (𝜅𝜇)

)

+ 𝜇

𝑛

∑

𝑖=1

ln (𝜌
𝑖
) − 𝜇 (1 + 𝜅)

𝑛

∑

𝑖=1

𝜌
2

𝑖

+

𝑛

∑

𝑖=1

ln [𝐼
𝜇−1
(2𝜇√𝜅 (1 + 𝜅)𝜌𝑖

)] ,

(10)

to write
Θ̂ML = sup

𝜃

𝐿 (𝜌; 𝜃) . (11)

From (11), one can see that it is necessary to simultaneously
solve the following equations:

𝜕𝐿 (𝜌; 𝜃)

𝜕𝜃
𝑗

= 0, 𝑗 = 1, 2, (12)

in order to obtain 𝜅ML and 𝜇ML.
Taking the derivative of (10) with respect to 𝜅, after some

simplifications we have

𝜕𝐿 (𝜌; 𝜅, 𝜇)

𝜕𝜅

=

𝑛 (1 + 𝜇)

2 (1 + 𝜅)

+

𝑛 (1 − 𝜇)

2𝜅

− 𝑛𝜇 − 𝜇

𝑛

∑

𝑖=1

𝜌
2

𝑖

+

𝑛

∑

𝑖=1

[𝐼
𝜇−2
(𝑦) + 𝐼

𝜇
(𝑦)] 𝜇 (1 + 2𝜅) 𝜌

𝑖

2𝐼
𝜇−1
(𝑦)√𝜅 + 𝜅

2
,

(13)

where 𝑦 = 2𝜇√𝜅(1 + 𝜅)𝜌
𝑖
. In the same way

𝜕𝐿 (𝜌; 𝜅, 𝜇)

𝜕𝜇

= 𝑛(

1

𝜇

− 𝜅) +

𝑛

2

ln(1 + 𝜅
𝜅

) +

𝑛

∑

𝑖=1

ln (𝜌
𝑖
)

− (1 + 𝜅)

𝑛

∑

𝑖=1

𝜌
2

𝑖
+

𝑛

∑

𝑖=1

1

𝐼
𝜇−1
(𝑦)

𝜕𝐼
𝜇−1
(𝑦)

𝜕𝜇

.

(14)

Observe that 𝐼](𝑧) in (14) depends on 𝜇 with respect to both
the order ] and the parameter 𝑧. Hence, the derivative with
respect to 𝜇 in the last term of (14) is the sum of two terms,
one only related to 𝑧 and the other only related to ]. As a
result, we have
𝜕𝐼
𝜇−1
(𝑦)

𝜕𝜇

=

𝜕𝐼] (𝑧)

𝜕𝑧

𝜕𝑧

𝜕𝜇

+

𝜕𝐼] (𝑧)

𝜕]
𝜕]
𝜕𝜇

= 𝜌
𝑖
√𝜅 (1 + 𝜅) [𝐼

𝜇−2
(𝑦) + 𝐼

𝜇
(𝑦)] + 𝐼

(1,0)

𝜇−1
(𝑦) .

(15)

Here 𝐼(1,0)] (𝑧) is defined as the derivative of 𝐼](𝑧) with respect
to the order ] [33, Equation (9.6.42)]; that is

𝐼
(1,0)

] (𝑧) =

𝜕𝐼] (𝑧)

𝜕]

= 𝐼] (𝑧) ln(
𝑧

2

) − (

𝑧

2

)

] ∞

∑

𝑘=0

𝜓
0 (
] + 𝑘 + 1)

Γ (] + 𝑘 + 1)
(𝑧
2
/4)

𝑘

𝑘!

,

(16)
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(1) Define the distribution parameters
(2) Find 𝜌

0
, solving (𝑑/𝑑𝜌)𝑓𝑥-𝑦-𝑧

𝑃
(𝜌) = 0

(3) Find 𝑏 = 𝑓𝑥-𝑦-𝑧
𝑃

(𝜌
0
)

(4) Find 𝑎 = min {(1/(𝜌 − 𝜌
0
)
2
) ln (𝑓𝑥-𝑦-𝑧

𝑃
(𝜌
0
) /𝑓
𝑥-𝑦-𝑧
𝑃

(𝜌))}, with 0 ≤ 𝜌 < ∞
(5) Generate 𝑌 from the distribution with density function ℎ(𝜌) = 𝑏 exp [−𝑎(𝜌 − 𝜌

0
)
2
] /𝑐

(6) Generate 𝑈 from a 𝑈(0, 1) distribution
(7) if 𝑈 ≤ 𝑓𝑥-𝑦-𝑧

𝑃
(𝑌)/𝑐ℎ(𝑌) then

(8) 𝑃 = 𝑌 as the desired sample
(9) else
(10) Return to Step 5
(11) end if
(12) Make the transformation 𝑃𝛼

𝛼-𝜅-𝜇 = 𝑃
2.2

2.2-𝜅-𝜇 to obtain 𝛼-𝜅-𝜇 samples or
Make the transformation 𝑃𝛼

𝛼-𝜂-𝜇 = 𝑃
3.5

3.5-𝜂-𝜇 to obtain 𝛼-𝜂-𝜇 samples

Algorithm 2: Definitive algorithm.

where 𝜓
0
(⋅) is the Digamma function [33, Equation (6.3.1)].

Fortunately, the function defined in (16) is available for direct
usage in current numerical softwares, such as Mathematica,
for instance, which makes (16) numerically tractable without
additional difficulties.

In general, it is less computationally intensive to evaluate
𝜅ML and 𝜇ML iteratively by optimization algorithms, that
is, finding Θ̂ML that maximizes 𝐿(𝜌; 𝜃) according to (11).
Here we use the iterative optimization algorithm𝑓𝑚𝑖𝑛𝑐𝑜𝑛 (⋅),
available in the MATLAB software, to estimate the dis-
tribution parameters. In this case, we maximize the log-
likelihood function applying the algorithm over the negative
log-likelihood −𝐿(𝜌; 𝜃). However, we still make use of (13)
and (14) in the estimator variance analysis.

The variance of an estimator is a measurement of its
ability to perform reliably as it gives the degree of certainty
in which the parameter is being estimated. In this context,
the Cramér-Rao lower bound (CRLB) sets a lower limit for
the variance of all unbiased estimators for 𝜃 and gives the
asymptotic variance for its ML estimator in a large sample
size condition [34]. Particularly, we can obtain the CRLB by
evaluating the Fisher informationmatrix I

𝑛
(𝜃) contained in 𝑛

random variables 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
about the parameter 𝜃 as [35]

I
𝑛
(𝜃)

= E
[

[

[

[

(

𝜕𝐿(𝜌; 𝜃)

𝜕𝜅

)

2
𝜕𝐿 (𝜌; 𝜃)

𝜕𝜅

𝜕𝐿 (𝜌; 𝜃)

𝜕𝜇

𝜕𝐿 (𝜌; 𝜃)

𝜕𝜇

𝜕𝐿 (𝜌; 𝜃)

𝜕𝜅

(

𝜕𝐿(𝜌; 𝜃)

𝜕𝜇

)

2

]

]

]

]

,

(17)

where E[⋅], meaning the expectation operator, is taken
with respect to the random variable 𝑃. One can note
that E[⋅] implies a multiple integration as 𝐿(𝜌; 𝜃) depends
on 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
. Fortunately, it has been shown that 𝑛

i.i.d. random samples, representative of the population
𝑓P(𝜌1, 𝜌2, . . . , 𝜌𝑛; 𝜃), have I𝑛(𝜃) = 𝑛I(𝜃) [35], where I(𝜃) is the

Fisher information contained in only one random variable 𝑃
about 𝜃. In a matrix form we have [35]

I𝑛 (𝜃) = 𝑛I (𝜃)

= 𝑛E
[
[
[
[

[

(
𝜕 ln𝑓𝑃(𝜌; 𝜃)
𝜕𝜅
)

2
𝜕 ln𝑓𝑃 (𝜌; 𝜃)
𝜕𝜅

𝜕 ln𝑓𝑃 (𝜌; 𝜃)
𝜕𝜇

𝜕 ln𝑓𝑃 (𝜌; 𝜃)
𝜕𝜇

𝜕 ln𝑓𝑃 (𝜌; 𝜃)
𝜕𝜅

(
𝜕 ln𝑓𝑃(𝜌; 𝜃)
𝜕𝜇
)

2

]
]
]
]

]

,

(18)

where the derivatives 𝜕 ln𝑓
𝑃
(𝜌; 𝜃)/𝜕𝜅 and 𝜕 ln𝑓

𝑃
(𝜌; 𝜃)/𝜕𝜇 are

obtained, respectively, from (13) and (14) by setting 𝑛 = 1.
One can readily verify that the derivatives are given by

𝜕 ln𝑓
𝑃
(𝜌; 𝜃)

𝜕𝜅

=

1 + 𝜇

2 (1 + 𝜅)

+

1 − 𝜇

2𝜅

− 𝜇 (1 + 𝜌
2
)

+

[𝐼
𝜇−2
(𝑦) + 𝐼

𝜇
(𝑦)] 𝜇 (1 + 2𝜅) 𝜌

2𝐼
𝜇−1
(𝑦)√𝜅 + 𝜅

2
,

(19)

𝜕 ln𝑓
𝑃
(𝜌; 𝜃)

𝜕𝜇

=

1

𝜇

− 𝜅 + ln(√1 + 𝜅
𝜅

𝜌) − (1 + 𝜅) 𝜌
2

+

𝜌√𝜅 (1 + 𝜅) [𝐼
𝜇−2
(𝑦) + 𝐼

𝜇
(𝑦)] + 𝐼

(1,0)

𝜇−1
(𝑦)

𝐼
𝜇−1
(𝑦)

.

(20)

The element [I(𝜃)]
11
, for instance, is numerically solved as

[I (𝜃)]11 = ∫
∞

0

(

𝜕 ln𝑓
𝑃
(𝜌; 𝜃)

𝜕𝜅

)

2

𝑓
𝑃
(𝜌; 𝜃) d𝜌, (21)

where 𝑓
𝑃
(𝜌; 𝜃) is the 𝜅-𝜇 pdf given by [2, Equation (1)]. After

numerically evaluating I(𝜃), the CRLB or, equivalently, the
asymptotic covariance matrix of Θ̂ML, based on 𝑛 i.i.d. obser-
vations 𝜌

𝑖
, is given by (1/𝑛)I(𝜃)−1 [35]. As a consequence, for
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Figure 6: Normalized standard deviation curves for the ML estimators of 𝜅 and 𝜇. (a)√Var[𝜅ML]|𝑛=1 as function of 𝜅 and for 𝜇 = {1, 10}. (b)
√Var[𝜇ML]|𝑛=1 as function of 𝜇 and for 𝜅 = {1, 10}.

a large sample size we have Var[𝜅ML] → (1/𝑛)[I(𝜃)−1]
11
and

Var[𝜇ML] → (1/𝑛)[I(𝜃)−1]
22
.

Figure 6 shows the normalized asymptotic variances
Var[𝜅ML]|𝑛=1 and Var[𝜇ML]|𝑛=1, based on the Fisher infor-
mation contained in only one observation 𝑃 = 𝜌 about
the parameter 𝜃. In particular, Figure 6(a) shows that
Var[𝜅ML]|𝑛=1 has a minimum value about 𝜅 = 1 and does not
depend on 𝜇 from a practical point of view. Note that this
variance increases with the value of 𝜅 and tends to infinity
when 𝜅 → 0, denoting large uncertainty in estimating the
parameter in a population with 𝜅 ≈ 0. Similarly, Figure 6(b)
depicts that Var[𝜇ML]|𝑛=1 has no practical dependence with 𝜅
and linearly increases with 𝜇.

Also, it has been shown [35] that Θ̂ML has an asymptotic
multivariate Gaussian distribution with mean 𝜃 and covari-
ance matrix (1/𝑛)I(𝜃)−1. Thus, as 𝑛 → ∞

(

Θ̂ML
𝑖

− 𝜃
𝑖

√(1/𝑛) [I(𝜃)−1]
𝑖𝑖

) → 𝑁(0, 1) , 𝑖 = 1, 2. (22)

Furthermore, it is straightforward to find [36] the confidence
interval (𝑙(𝜌), 𝑢(𝜌)) for Θ̂ML = [𝜅ML, 𝜇ML], with confidence
level of 95%, as

(Θ̂ML
𝑖

− 1.96√(

1

𝑛

) [I(𝜃)−1]
𝑖𝑖
,

Θ̂ML
𝑖

+ 1.96√(

1

𝑛

) [I(𝜃)−1]
𝑖𝑖
) , 𝑖 = 1, 2.

(23)

We note that I(𝜃) in (23) depends on 𝜃, that is, the true value
of the parameter, which is therefore unknown. However, Θ̂ML

converges in probability to 𝜃 as 𝑛 → ∞ [34], which makes it
possible to infer that

I (Θ̂ML) → I (𝜃) (24)

as 𝑛 → ∞. As a result, for large sample sizes we can estimate
I(𝜃) by I(Θ̂ML) in (23) in order to compute the confidence
interval.

5.2. Performance of the 𝜅-𝜇 Random Variable Generator. We
use Monte Carlo simulations in order to study the perfor-
mance of the 𝜅-𝜇 generator. Following the guidelines given
in Section II, for each 𝜅 in the set {0.25, 0.5, 0.75, . . . , 4.75, 5},
𝜇 = 1 and 𝛼 = 2 [1], we generate 500 sequences of 𝑛 = 25000
i.i.d. 𝜅-𝜇 random variables. Similarly, we generate 500 i.i.d.
𝜅-𝜇 sequences of the same length for each 𝜇 from the set
{0.5, 0.75, 1, . . . , 4.75, 5}, 𝜅 = 2 and 𝛼 = 2. In this way we
cover a useful range of the parameters 𝜅 and 𝜇, found in both
indoor and outdoor multipath propagation environments
[2, 37].

Taking advantage of notable properties of the ML esti-
mation for large sample sizes, we calculate ML estimates of
the parameters 𝜅 and 𝜇 for each sequence, according to (11),
using the already cited algorithm 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 (⋅), available in
the MATLAB software. The starting values of the estimates
required by the algorithm are given as the true values of the
parameters.

Figure 7 shows the sample mean of 𝜅ML,
(1/500)∑

500

𝑖=1
𝜅ML𝑖, against the true value of the parameter.

In order to show the estimator variations about its
sample mean, we also plotted in Figure 7 a confidence
region defined by ±2 × (sample standard deviation of
𝜅ML), where the sample standard deviation is given by
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Figure 7: Sample mean and confidence region (±2 × sample stan-
dard deviation) of 𝜅ML, for 𝑛 = 25000 and 𝜇 = 1.

[(1/500)∑
500

𝑖=1
𝜅
2

ML𝑖 − ((1/500)∑
500

𝑖=1
𝜅ML𝑖)
2
]
1/2. We verify that,

for a large sample size, 𝜅ML is unbiased, from a practical
point of view, for the useful range of 𝜅. This is in accordance
with the unbiased behavior that the ML estimators have in
large sample size conditions [29]. In addition, the confidence
region of 𝜅ML becomes broader as 𝜅 increases; that is, the
variance of 𝜅ML increases with the value of the parameter, as
observed from the results in Figure 6(a).

Similar results of the sample mean for 𝜇ML against 𝜇 are
depicted in Figure 8. Likewise, 𝜇ML is practically unbiased for
the useful range of 𝜇 and its variance increases with the value
of the parameter, according to the results in Figure 6(b).

The unbiasedness of the ML estimators for large sample
sizes, depicted in Figures 7 and 8, reveals the 𝜅-𝜇 generator
ability to provide real random samples representative of a
population with distribution 𝑓

𝑃
(𝜌; 𝜅, 𝜇). This also alterna-

tively confirms the excellent goodness-of-fit results given
by the Kolmogorov-Smirnov and Anderson-Darling tests in
Section 3, when applied to the 𝛼-𝜅-𝜇 generator.

6. Applications

In this section we give applications of the proposed random
variable generators and use theoretical and simulation results
for certifying the accuracy of these generators.

6.1. Average Error Probability of the BPSKModulation over the
𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 Fading Channels. Here we analyze the bit
error rate (BER) of the BPSK modulation over frequency-flat
fading channels modeled by the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 distribu-
tions. We assume coherent detection with matched filter or
correlator receivers, for which the following vector channel
model applies: the decision variable is 𝑦 = 𝜌𝑑 + V, where 𝜌 is
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Figure 8: Sample mean and confidence region (±2 × sample stan-
dard deviation) of 𝜇ML, for 𝑛 = 25000 and 𝜅 = 2.
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Figure 9: Average error probability for BPSK with 𝛼-𝜅-𝜇 fading.

the multiplicative fading with E[𝑃2] = 1, 𝑑 = +1 represents a
bit 1, 𝑑 = −1 represents a bit 0, and V is the zeromean, additive
white Gaussian noise (AWGN) with variance𝑁

0
/2.

One possible analytical method employed for determin-
ing the performance of amobile radio communication system
is by evaluating the error probability as a function of a fixed
signal-to-noise ratio (SNR) and then averaging the result over
the probability density function of the SNR variations, which
is governed by the particular envelope fading distribution.
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Figure 10: Average error probability for BPSK with 𝛼-𝜂-𝜇 fading.

For instance, the bit error probability of the BPSKmodulation
over the pure AWGN channel as a function of the received
SNR 𝛾 is given by

𝑃e (𝛾) =
1

2

erfc (√𝛾) , (25)

where 𝛾 = 𝜌2𝐸b/𝑁0 is the SNR for a particular value of the
envelope 𝜌, 𝐸b/𝑁0 is the ratio between the average energy
per bit and the noise power spectral density, and erfc(⋅) is the
complementary error function.

Now, we must average 𝑃e(𝛾) over the probability density
function of 𝛾; that is,

𝑃e = ∫
∞

0

𝑃BPSK𝑓
𝑥-𝑦-𝑧
Γ

(𝛾) d𝛾, (26)

where 𝑓𝑥-𝑦-𝑧
Γ

(𝛾) is the pdf of 𝛾 for all 𝛾 ≥ 0, with 𝑥-𝑦-𝑧
standing for 𝛼-𝜅-𝜇 or 𝛼-𝜂-𝜇.

Applying a transformation of random variables, from (4)
and (6), we have

𝑓
𝛼-𝜅-𝜇
Γ

(𝛾)

=

𝛼𝜅
(1−𝜇)/2

(1 + 𝜅)
(1+𝜇)/2

𝜇(√𝛾/𝛾)

𝛼(1+𝜇)/2−1

2√𝛾𝛾 exp [𝜇 (𝜅 + (√𝛾/𝛾)
𝛼

+ 𝜅(√𝛾/𝛾)

𝛼

)]

× 𝐼
𝜇−1
(2√𝜅 (1 + 𝜅)𝜇(√

𝛾

𝛾

)

𝛼/2

)

(27)

𝑓
𝛼-𝜂-𝜇
Γ

(𝛾)

=

𝛼(𝜂 − 1)
1/2−𝜇

(𝜂 + 1)
1/2+𝜇

√𝜋𝜇
1/2+𝜇

2√𝛾𝛾 exp [(1 + 𝜂)2𝜇(√𝛾/𝛾)
𝛼

/2𝜂]√𝜂Γ (𝜇)

×(√

𝛾

𝛾

)

𝛼(1/2+𝜇)−1

𝐼
𝜇−(1/2)

(

(𝜂
2
− 1) 𝜇(√𝛾/𝛾)

𝛼

2𝜂

),

(28)

where 𝛾 = E(𝑅𝛼)𝐸b/𝑁0 is the average SNR when 𝑅 is 𝛼-𝜅-𝜇
or 𝛼-𝜂-𝜇 distributed.

The integral in (26) was evaluated numerically. The
average error probabilities curves for the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇
fading channels are presented in Figures 9 and 10. In these
figures, the theoretical results (solid), from (26), and the
simulated results (symbols), from aMATLAB program based
on the vector channel model presented above, are plotted
for the indicated fading conditions. It is clearly observed
that, in spite of the variety of the fading conditions, excellent
agreement between the estimated and theoretical results is
shown, once more certifying the proposed algorithms for
random variable generation. A myriad of different scenarios
can be exercised for different values of the fading parameters.
We omitted some particular cases (e.g., Rice or Nakagami-𝑞)
for the sake of brevity. All the particular cases departing from
the general models considered in this paper are in agreement
with the particular cases presented in the literature (see, for
example, the expressions presented in [38]).

It is worth mentioning that the application just described
can be used to check the adherence of the generated random
numbers to the tails of their probability distributions as
follows. The agreement between theoretical and simulation
results in the high 𝐸b/𝑁0 regime is an evidence of a good
adherence in the tail region, since this region governs the
performance at high signal-to-noise levels.

6.2. Spectrum Sensing over the 𝜂-𝜇 and 𝜅-𝜇 Fading Channels.
Modern wireless communication systems are now facing a
huge obstacle, spectrum scarcity. New services and applica-
tions appear every day, demanding increased bandwidth, new
spectrum bands, or both. However, the currently adopted
fixed spectrum allocation policy prevents those services and
applications to be deployed in adequate pace. Nevertheless,
recent studies have demonstrated that, in fact, the radio-
frequency spectrum is quite underutilized in some areas
and during some time [39]. The cognitive radio (CR) [40]
concept then came into scene, aiming at, among other things,
opportunistic dynamic spectrum access to idle bands. In this
situation, the network which owns the right of using the
spectrum is called the primary network, and the cognitive
radio network is usually referred to as the secondary network.

To detect the idle bands, also called spectral holes or
whitespaces, the CRsmust have some sort of spectrum sensing
capability [41]. Among the spectrum sensing techniques
already developed, energy detection is one of the most
attractive, since it has low implementation complexity and
good detection power. In energy detection, a test statistic
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computed from the received signal energy and the noise
variance is compared against a threshold so that the decision
upon the occupation of the sensed channel is made.

Several studies consider the problem of spectrum sensing
with energy detection over the pure AWGN channel, an
approach, that is, by far unrealistic since typical wireless
communication channels are also subjected to fading. Then,
it is of paramount importance to access the performance of a
spectrum sensing technique taking into account the channel
fading.

There are several fading channel models available in the
literature. Among them, two well-accepted models deserve
attention due to their ability for accurately modelling several
real channel conditions in practice. They are the 𝜂-𝜇 [2] and
𝜅-𝜇 [2] fading channel models. Both are special cases of the
𝛼-𝜂-𝜇 and 𝛼-𝜅-𝜇 fading models considered in this paper, if
𝛼 = 2 is adopted.

In this sectionwe apply𝛼-𝜂-𝜇 and𝛼-𝜅-𝜇 randomvariates,
specialized to 𝜂-𝜇 and 𝜅-𝜇 variates, to analyze the perfor-
mance of the energy detection over fading channels.

6.2.1. SystemModel. Thediscrete-timemodel for the hypoth-
esis test associated with the spectrum sensing problem is
given by

𝑟
𝑖
= {

𝑧
𝑖
:H
0

ℎ𝑥
𝑖
+ 𝑧
𝑖
:H
1
,

(29)

where H
0
denotes an idle channel state and H

1
denotes a

busy channel, 𝑟
𝑖
is the 𝑖th received signal sample collected

by the CR, 𝑖 = 1, . . . , 𝑛 during the sensing interval, 𝑧
𝑖

is the zero mean Gaussian thermal noise sample generated
at the receiver input, 𝑥

𝑖
is the primary transmitted signal

sample, and ℎ represents the channel fading envelope, which
is assumed to be constant during the sensing interval. From
the received signal, the test statistic for the energy detector is
computed according to

𝑦 =

1

𝜎
2

𝑛

∑

𝑖=1

𝑟
2

𝑖
, (30)

where 𝜎2 = 𝑁
0
𝑊 is the thermal noise variance measured

in the bandwidth𝑊, with𝑁
0
being the noise power spectral

density.Thenumber of samples 𝑛 relateswith the sensing time
𝑇 and the bandwidth𝑊 through the time-bandwidth product
𝑢 = 𝑇𝑊, leading to 𝑛 = 2𝑇𝑊.

The average signal-to-noise ratio (SNR) is defined by 𝛾 =
E[ℎ2](𝐸

𝑥
/𝑁
0
), where the primary transmitted signal energy

during the sensing interval is 𝐸
𝑥
= (1/2𝑊)∑

𝑛

𝑖=1
𝑥
2

𝑖
and

E[ℎ2] is the secondmoment of the fading envelope. Assuming
E[ℎ2] = 1 without loss of generality and using 𝑁

0
= 𝜎
2
/𝑊,

the average SNR is simplified to 𝛾 = (1/2𝜎2) ∑𝑛
𝑖=1
𝑥
2

𝑖
. If the

primary signal power is 𝑃
𝑥
= 𝐸
𝑥
/𝑇 = (1/𝑛)∑

𝑛

𝑖=1
𝑥
2

𝑖
, the noise

variance can be determined from a given SNR by applying

𝜎
2
=

𝑛𝑃
𝑥

2𝛾

. (31)
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Figure 11: ROC curves for 𝜅-𝜇 and 𝜂-𝜇 with different values of 𝜅, 𝜂,
and 𝜇.

6.2.2. Results. The performance of a spectrum sensing tech-
nique is often measured in terms of the probability of
detection, 𝑃d, and the probability of false alarm, 𝑃fa. When
the primary network signal is present in the sensed channel,
𝑃d is the probability of declaring it indeed present. When
the primary network signal is absent, 𝑃fa is the probability of
declaring it present. A large value of 𝑃d translates into a small
probability of interference from the secondary in the primary
network. A small value of 𝑃fa translates into an increased
throughput of the secondary network due to a more efficient
use of spectral holes. These probabilities are often traded in a
receiver operating characteristic (ROC) curve, which shows
the values of 𝑃fa versus 𝑃d as the decision threshold is varied.

Figure 11 shows analytical (lines) and simulation (sym-
bols) results of the energy detection over the 𝜂-𝜇 (𝛼-𝜂-𝜇 with
𝛼 = 2) and 𝜅-𝜇 (𝛼-𝜅-𝜇 with 𝛼 = 2) fading channels. We have
considered 𝑛 = 50 samples (𝑇𝑊 = 𝑢 = 25), 𝛾 = 3, 5, 8,
and 10 dB.The simulation results were obtained from 100,000
Monte Carlo runs. The analytical results were obtained by
numerically evaluating (6) and (11) of [42] in the case of 𝜂-
𝜇, and by evaluating (3) and (14) of [43] in the case of 𝜅-𝜇.
We have used the Mathematica software package to solve the
above equations. The minimum and maximum values of the
decision threshold (resp., 𝜆min and 𝜆max) are also reported
to facilitate the reproduction of our results. Specifically, for
𝜂 = 0.1 and 𝜇 = 1, 𝜆min = 31, and 𝜆max = 100, for 𝜅 = 1.5
and 𝜇 = 0.8, 𝜆min = 30, and 𝜆max = 85, for 𝜂 = 2 and 𝜇 = 4,
𝜆min = 33, and 𝜆max = 86, and for 𝜅 = 2 and 𝜇 = 2, 𝜆min = 27,
and 𝜆max = 80.

From Figure 11 the adherence between simulation and
analytical results is apparent, validating, again, our random
sequence generator.
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7. Conclusions

In this paper, sequences of general distributions 𝛼-𝜅-𝜇 and
𝛼-𝜂-𝜇 with arbitrary fading parameters were generated using
the well-known acceptance-rejection method. Since these
densities are general distributions that include a wide range
of other distributions, the method is useful for the gener-
ation of random numbers of many distinct distributions.
The acceptance proportion (more than 95% in some cases)
combined with the Kolmogorov-Smirnov and Anderson-
Darling tests demonstrate the efficiency and accuracy of
the proposed method. The algorithm has been validated by
reducing the general case proposed here to special cases
already found in the literature. The maximum likelihood
parameter estimation was applied to generated 𝜅-𝜇 random
samples. The unbiasedness of the 𝜅-𝜇 ML estimators, for
large sample size, reveals the generator ability to provide
real random samples representative of a population with
distribution 𝑓

𝑃
(𝜌; 𝜅, 𝜇). Two applications showed the use of

the proposed generators to assess the performance of a digital
communication system over the 𝛼-𝜅-𝜇 and 𝛼-𝜂-𝜇 fading
channels and to assess the performance of the spectrum
sensing with energy detection over the 𝜅-𝜇 and 𝜂-𝜇 fading
channels.
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