2,455 research outputs found
The Coherence Field in the Field Perturbation Theory of Superconductivity
We re-examine the Nambu-Gorkov perturbation theory of superconductivity on
the basis of the Bogoliubov-Valatin quasi-particles. We show that two different
fields (and two additional analogous fields) may be constructed, and that the
Nambu field is only one of them. For the other field- the coherence field- the
interaction is given by means of two interaction vertices that are based on the
Pauli matrices tau1 and tau3. Consequently, the Hartree integral for the
off-diagonal pairing self-energy may be finite, and in some cases large. We
interpret the results in terms of conventional superconductivity, and also
discuss briefly possible implications to HTSC
Challenges for Global Learners: A Qualitative Study of the Concerns and Difficulties of International Students
The authors in this study seek to inform academia about international students’ experiences and challenges while attending universities in Small Town USA. Despite their eagerness to study in the United States (U.S.), international students are faced with setbacks that many universities fail to recognize or realize. The researchers conducted in-depth interviews with a purposive sample of students using questions based on information from the literature and an initial survey. The themes that emerged from the data analysis were language, jobs/finances, transportation, assimilation, religious interactions, and identity. Findings emphasize the imperative to understand the challenges these students face as they continue their educational journeys in the United States
Spectral Polarization and Spectral Phase Control of Time and Energy Entangled Photons
We demonstrate a scheme to spectrally manipulate a collinear, continuous
stream of time and energy entangled photons to generate beamlike,
bandwidth-limited fuxes of polarization-entangled photons with
nearly-degenerate wavelengths. Utilizing an ultrashort-pulse shaper to control
the spectral phase and polarization of the photon pairs, we tailor the shape of
the Hong-Ou-Mandel interference pattern, demonstrating the rules that govern
the dependence of this interference pattern on the spectral phases of the
photons. We then use the pulse shaper to generate all four polarization Bell
states. The singlet state generated by this scheme forms a very robust
decoherence-free subspace, extremely suitable for long distance fiber-optics
based quantum communication.Comment: 5 pages, 3 figure
Supergravity Higgs Inflation and Shift Symmetry in Electroweak Theory
We present a model of inflation in a supergravity framework in the Einstein
frame where the Higgs field of the next to minimal supersymmetric standard
model (NMSSM) plays the role of the inflaton. Previous attempts which assumed
non-minimal coupling to gravity failed due to a tachyonic instability of the
singlet field during inflation. A canonical K\"{a}hler potential with
\textit{minimal coupling} to gravity can resolve the tachyonic instability but
runs into the -problem. We suggest a model which is free of the
-problem due to an additional coupling in the K\"{a}hler potential which
is allowed by the Standard Model gauge group. This induces directions in the
potential which we call K-flat. For a certain value of the new coupling in the
(N)MSSM, the K\"{a}hler potential is special, because it can be associated with
a certain shift symmetry for the Higgs doublets, a generalization of the shift
symmetry for singlets in earlier models. We find that K-flat direction has
This shift symmetry is broken by interactions coming from
the superpotential and gauge fields. This direction fails to produce successful
inflation in the MSSM but produces a viable model in the NMSSM. The model is
specifically interesting in the Peccei-Quinn (PQ) limit of the NMSSM. In this
limit the model can be confirmed or ruled-out not just by cosmic microwave
background observations but also by axion searches.Comment: matches the published version at JCA
Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons
We explore the dynamics of an integrate-and-fire neuron with an oscillatory
stimulus. The frustration due to the competition between the neuron's natural
firing period and that of the oscillatory rhythm, leads to a rich structure of
asymptotic phase locking patterns and ordering dynamics. The phase transitions
between these states can be classified as either tangent or discontinuous
bifurcations, each with its own characteristic scaling laws. The discontinuous
bifurcations exhibit a new kind of phase transition that may be viewed as
intermediate between continuous and first order, while tangent bifurcations
behave like continuous transitions with a diverging coherence scale.Comment: 4 pages, 5 figure
Current state of antimicrobial stewardship in children’s hospital emergency departments
BACKGROUND Antimicrobial stewardship programs (ASPs) effectively optimize antibiotic use for inpatients; however, the extent of emergency department (ED) involvement in ASPs has not been described. OBJECTIVE To determine current ED involvement in children's hospital ASPs and to assess beliefs and preferred methods of implementation for ED-based ASPs. METHODS A cross-sectional survey of 37 children's hospitals participating in the Sharing Antimicrobial Resistance Practices collaboration was conducted. Surveys were distributed to ASP leaders and ED medical directors at each institution. Items assessed included beliefs regarding ED antibiotic prescribing, ED prescribing resources, ASP methods used in the ED such as clinical decision support and clinical care guidelines, ED participation in ASP activities, and preferred methods for ED-based ASP implementation. RESULTS A total of 36 ASP leaders (97.3%) and 32 ED directors (86.5%) responded; the overall response rate was 91.9%. Most ASP leaders (97.8%) and ED directors (93.7%) agreed that creation of ED-based ASPs was necessary. ED resources for antibiotic prescribing were obtained via the Internet or electronic health records (EHRs) for 29 hospitals (81.3%). The main ASP activities for the ED included production of antibiograms (77.8%) and creation of clinical care guidelines for pneumonia (83.3%). The ED was represented on 3 hospital ASP committees (8.3%). No hospital ASPs actively monitored outpatient ED prescribing. Most ASP leaders (77.8%) and ED directors (81.3%) preferred implementation of ED-based ASPs using clinical decision support integrated into the EHR. CONCLUSIONS Although ED involvement in ASPs is limited, both ASP and ED leaders believe that ED-based ASPs are necessary. Many children's hospitals have the capability to implement ED-based ASPs via the preferred method: EHR clinical decision support. Infect Control Hosp Epidemiol 2017;38:469-475
Effects of Noise in a Cortical Neural Model
Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made
long-term observations of spontaneous activity of in-vitro cortical networks,
which differ from predictions of current models in many features. In this paper
we generalize the EI cortical model introduced in a previous paper (S.Scarpetta
et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing
effects of noise on the spontaneous activity of the nonlinear system, in order
to account for the experimental results of Segev et al.. Analytically we can
distinguish different regimes of activity, depending from the model parameters.
Using analytical results as a guide line, we perform simulations of the
nonlinear stochastic model in two different regimes, B and C. The Power
Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI)
distributions are computed, and compared with experimental results. In regime B
the network shows stochastic resonance phenomena and noise induces aperiodic
collective synchronous oscillations that mimic experimental observations at 0.5
mM Ca concentration. In regime C the model shows spontaneous synchronous
periodic activity that mimic activity observed at 1 mM Ca concentration and the
PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments
at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function
effects) the PSD shows a broad band peak at low frequency. This feature,
observed experimentally, does not find explanation in the previous models.
Besides we identify parametric changes (namely increase of noise or decreasing
of excitatory connections) that reproduces the fading of periodicity found
experimentally at long times, and we identify a way to discriminate between
those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.
Targeted metabolomic analyses of cellular models of pelizaeus-merzbacher disease reveal plasmalogen and myo-inositol solute carrier dysfunction
<p>Abstract</p> <p>Background</p> <p>Leukodystrophies are devastating diseases characterized by dys- and hypo-myelination. While there are a number of histological and imaging studies of these disorders, there are limited biochemical data available. We undertook targeted lipidomic analyses of Pelizaeus-Merzbacher disease (PMD) fibroblasts, PMD lymphocytes, and 158JP oligodendrocytes, a murine model of PMD, to define the lipid changes in these cell models. Further targeted metabolomics analyses were conducted to obtain a preliminary evaluation of the metabolic consequences of lipid changes and gene mutations in these cell models.</p> <p>Results</p> <p>In both PMD fibroblasts and lymphocytes, and 158JP oligodendrocytes, ethanolamine plasmalogens were significantly decreased. Labeling studies with 158JP oligodendrocytes further demonstrated a decreased rate of lipid remodeling at sn-2. Targeted metabolomics analyses of these cells revealed dramatic increases in cellular levels of myo-inositol. Further uptake studies demonstrated increased rates of myo-inositol uptake by PMD lymphocytes.</p> <p>Conclusions</p> <p>Our data demonstrating PlsEtn decrements, support previous studies indicating leukodystrophy cells possess significant peroxisomal deficits. Our data for the first time also demonstrate that decrements in peroxisomal function coupled with the PLP1 gene defects of PMD, result in changes in the function of membrane myo-inositol solute carriers resulting in dramatic increases in cellular myo-inositol levels.</p
- …