21,365 research outputs found
Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes
Theoretical studies have shown that the issue of rupture modes has important implications for fault constitutive laws, stress conditions on faults, energy partition and heat generation during earthquakes, scaling laws, and spatiotemporal complexity of fault slip. Early theoretical models treated earthquakes as crack-like ruptures, but seismic inversions indicate that earthquake ruptures may propagate in a self-healing pulse-like mode. A number of explanations for the existence of slip pulses have been proposed and continue to be vigorously debated. This study presents experimental observations of spontaneous pulse-like ruptures in a homogeneous linear-elastic setting that mimics crustal earthquakes; reveals how different rupture modes are selected based on the level of fault prestress; demonstrates that both rupture modes can transition to supershear speeds; and advocates, based on comparison with theoretical studies, the importance of velocity-weakening friction for earthquake dynamics
Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators
Microresonators are ideal systems for probing nonlinear phenomena at low thresholds due to their small mode volumes and high quality (Q) factors. As such, they have found use both for fundamental studies of light-matter interactions as well as for applications in areas ranging from telecommunications to medicine. In particular, semiconductor-based resonators with large Kerr nonlinearities have great potential for high speed, low power all-optical processing. Here we present experiments to characterize the size of the Kerr induced resonance wavelength shifting in a hydrogenated amorphous silicon resonator and demonstrate its potential for ultrafast all-optical modulation and switching. Large wavelength shifts are observed for low pump powers due to the high nonlinearity of the amorphous silicon material and the strong mode confinement in the microcylindrical resonator. The threshold energy for switching is less than a picojoule, representing a significant step towards advantageous low power silicon-based photonic technologies
Fragmentation pathways of [Re₂(μ-OR)₃(CO)₆]– (R = H, Me) and ligand exchange reactions with oxygen donor ligands, investigated by electrospray mass spectrometry
The rhenium hydroxy and methoxy carbonyl complexes [Re₂(μOR)₃(CO)₆]⁻ (R = H or Me) have been studied by negative-ion electrospray mass spectrometry (ESMS). The complexes undergo facile exchange reactions with protic compounds, including alcohols and phenols. With dimethyl malonate, ester hydrolysis occurs giving carboxylate-containing complexes, and with H₂O₂ or ButOOH, oxidation to ReO₄⁻occurs. The feasibility and extent of these reactions can conveniently, rapidly, and unambiguously be determined by electrospray mass spectrometry, and is dependent on the acidity and steric bulk of the protic compound. The results also suggest that the complexes can be used as versatile starting materials for the synthesis of a wide range of analogous [Re₂(μ-OR)₃(CO)₆]⁻ complexes by simple reaction with an excess of the appropriate alcohol. By varying the applied cone voltage the fragmentation pathways have been investigated; the hydroxy complex undergoes dehydration followed by CO loss, whereas for the methoxy complex -hydride elimination (and CO loss) is observed, with confirmation provided by deuterium labelling studies. Under ESMS conditions, the neutral complexes [Re₂(μ-OR)₂(μ-dppf )(CO)₆] [R = H or Me; dppf = 1,1 -bis(diphenylphosphino)ferrocene] undergo substantial solvolysis and hydrolysis to give mainly mononuclear species; simple parent ions (e.g. [M + H]⁺) are not formed in appreciable abundance, probably due to the lack of an efficient ionisation pathway
The Leucocytic response of swine to stilbestrol and a progesterone-estradiol combination
This work was conducted in combination with the Regional Swine Breeding Laboratory, AHRD, ARS, USDA--P. [3].Digitized 2007 AES.Includes bibliographical references (page 15)
Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy
The method of fluorescence lifetime imaging microscopy (FLIM) is a quantitative approach that can be used to detect Förster Resonance Energy Transfer (FRET). The use of FLIM to measure the FRET that results from the interactions between proteins labeled with fluorescent proteins (FPs) inside living cells provides a non-invasive method for mapping interactomes. Here, the use of the phasor plot method to analyze frequency domain (FD) FLIM measurements is described, and measurements obtained from cells producing the 'FRET standard' fusion proteins are used to validate the FLIM system for FRET measurements. The FLIM FRET approach is then used to measure both homologous and heterologous protein-protein interactions (PPI) involving the CCAAT/enhancer-binding protein alpha (C/EBPα). C/EBPα is a transcription factor that controls cell differentiation, and localizes to heterochromatin where it interacts with the heterochromatin protein 1 alpha (HP1α). The FLIM-FRET method is used to quantify the homologous interactions between the FP-labeled basic leucine zipper (BZip) domain of C/EBPα. Then the heterologous interactions between the C/EBPa BZip domain and HP1a are quantified using the FRET-FLIM method. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin
An investigation into the cognitive effects of delayed visual feedback
Abstract unavailable please refer to PD
User benefits and funding strategies
The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others
THE LIFESPAN OF CORPORA LUTEA INDUCED DURING THE LUTEAL PHASE OF THE ESTROUS CYCLE IN SWINE.
A more complete understanding of the mechanisms involved in the function and maintenance of the corpus luteum would be very useful in developing more effective methods of controlling the estrous cycle in farm animals. Various types and classes of experimental animals have been utilized in an effort to define the factors causing the persistence of the corpus luteum. In swine, several different experimental approaches have been made in an attempt to extend, experimentally, the functional lifespan of the corpus luteum in non-pregnant animals. Less frequently, attempts have been made to induce premature regression. In general, the procedures used to induce premature regression have not been effective when applied to the corpora lutea of cycling swine. For example, Sammelwitz et al. (1) reported that injected progesterone would cause luteal regression in pregnant swine but not in cycling swine
- …