12,196 research outputs found

    The inclusion of bioethics education in biotechnology courses

    Get PDF
    This paper provides a rationale for the inclusion of biotechnology courses in the secondary science curriculum. In years to come our students will need to make important political, moral and social decisions about their future and the future of others. If our students are to become informed decision makers they need to understand the theory, practice and ethical ramifications of biotechnology. Important topics related to biotechnology include euthanasia, human organ and tissue transplantation, reproductive technology, cloning, and the production and use of genetically modified organisms. Science teachers have an obligation to help their students develop an understanding of these issues. Data is presented from two science teachers, Catherine and Mark, each of whom taught innovative Year 10 Biotechnology courses (student age 16-17 years). The effectiveness of the courses in enabling students to better identify and resolve ethical issues is discussed

    Near Infrared Spectroscopy of Young Brown Dwarfs in Upper Scorpius

    Get PDF
    Spectroscopic follow-up is a pre-requisite for studies of the formation and early evolution of brown dwarfs. Here we present IRTF/SpeX near-infrared spectroscopy of 30 candidate members of the young Upper Scorpius association, selected from our previous survey work. All 24 high confidence members are confirmed as young very low mass objects with spectral types from M5 to L1, 15-20 of them are likely brown dwarfs. This high yield confirms that brown dwarfs in Upper Scorpius can be identified from photometry and proper motions alone, with negligible contamination from field objects (<4%). Out of the 6 candidates with lower confidence, 5 might still be young very low mass members of Upper Scorpius, according to our spectroscopy. We demonstrate that some very low mass class II objects exhibit radically different near infrared (0.6 - 2.5micron) spectra from class III objects, with strong excess emission increasing towards longer wavelengths and partially filled in features at wavelengths shorter than 1.25micron. These characteristics can obscure the contribution of the photosphere within such spectra. Therefore, we caution that near infrared derived spectral types for objects with discs may be unreliable. Furthermore, we show that the same characteristics can be seen to some extent in all class II and even a significant fraction of class III objects (~40%), indicating that some of them are still surrounded by traces of dust and gas. Based on our spectra, we select a sample of objects with spectral types of M5 to L1, whose near-infrared emission represents the photosphere only. We recommend the use of these objects as spectroscopic templates for young brown dwarfs in the future.Comment: 12 pages, 9 figures, Accepted in MNRA

    The SONYC survey: Towards a complete census of brown dwarfs in star forming regions

    Full text link
    SONYC, short for "Substellar Objects in Nearby Young Clusters", is a survey program to provide a census of the substellar population in nearby star forming regions. We have conducted deep optical and near-infrared photometry in five young regions (NGC1333, rho Ophiuchi, Chamaeleon-I, Upper Sco, and Lupus-3), combined with proper motions, and followed by extensive spectroscopic campaigns with Subaru and VLT, in which we have obtained more than 700 spectra of candidate low-mass objects. We have identified and characterized more than 60 new substellar objects, among them a handful of objects with masses close to, or below the Deuterium burning limit. Through SONYC and surveys by other groups, the substellar IMF is now well characterized down to ~ 5 - 10 MJup, and we find that the ratio of the number of stars with respect to brown dwarfs lies between 2 and 6. A comprehensive survey of NGC 1333 reveals that, down to ~5MJup, free-floating objects with planetary masses are 20-50 times less numerous than stars, i.e. their total contribution to the mass budget of the clusters can be neglected.Comment: to appear in the proceedings of the conference 'Brown dwarfs come of age', May 20-24 2013, Memorie della Societa Astronomica Italian

    The Carina Flare: What can fragments in the wall tell us?

    Get PDF
    13^{13}CO(J=2--1) and C18^{18}O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute their sizes and masses. We discuss their mass spectrum and interpret it as being the result of the shell fragmentation process described by the pressure assisted gravitational instability - PAGI. We conclude that the explanation of the clump mass function needs a combination of gravity with pressure external to the shell.Comment: 19 pages, 14 figures, accepted by A&

    Hydration of a B-DNA Fragment in the Method of Atom-atom Correlation Functions with the Reference Interaction Site Model Approximation

    Full text link
    We propose an efficient numerical algorithm for solving integral equations of the theory of liquids in the Reference Interaction Site Model (RISM) approximation for infinitely dilute solution of macromolecules with a large number of atoms. The algorithm is based on applying the nonstationary iterative methods for solving systems of linear algebraic equations. We calculate the solvent-solute atom-atom correlation functions for a fragment of the B-DNA duplex d(GGGGG).d(CCCCC) in infinitely dilute aqueous solution. The obtained results are compared with available experimental data and results from computer simulations.Comment: 9 pages, RevTeX, 9 pages of ps figures, accepted for publications in JC

    Phase Mixing of Nonlinear Plasma Oscillations in an Arbitrary Mass Ratio Cold Plasma

    Get PDF
    Nonlinear plasma oscillations in an arbitrary mass ratio cold plasma have been studied using 1-D particle-in-cell simulation. In contrast to earlier work for infinitely massive ion plasmas it has been found that the oscillations phase mix away at any amplitude and that the rate at which phase mixing occurs, depends on the mass ratio (Δ=m/m+\Delta = m_{-}/m_{+}) and the amplitude. A perturbation theoretic calculation carried upto third order predicts that the normalized phase mixing time ωptmix\omega_{p-} t_{mix} depends on the amplitude AA and the mass ratio Δ\Delta as [(A2/24)(Δ/1+Δ)]1/3\sim [(A^{2}/24)(\Delta/\sqrt{1 + \Delta})]^{-1/3}. We have confirmed this scaling in our simulations and conclude that stable non-linear oscillations which never phase mix, exist only for the ideal case with Δ=0.0\Delta = 0.0 and A<0.5A < 0.5. These cold plasma results may have direct relevance to recent experiments on superintense laser beam plasma interactions with applications to particle acceleration, fast ignitor concept etc.Comment: pp 10 and two figures in PS forma

    Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy

    Full text link
    We present an analysis technique that uses the timing information of Cherenkov images from extensive air showers (EAS). Our emphasis is on distant, or large core distance gamma-ray induced showers at multi-TeV energies. Specifically, combining pixel timing information with an improved direction reconstruction algorithm, leads to improvements in angular and core resolution as large as ~40% and ~30%, respectively, when compared with the same algorithm without the use of timing. Above 10 TeV, this results in an angular resolution approaching 0.05 degrees, together with a core resolution better than ~15 m. The off-axis post-cut gamma-ray acceptance is energy dependent and its full width at half maximum ranges from 4 degrees to 8 degrees. For shower directions that are up to ~6 degrees off-axis, the angular resolution achieved by using timing information is comparable, around 100 TeV, to the on-axis angular resolution. The telescope specifications and layout we describe here are geared towards energies above 10 TeV. However, the methods can in principle be applied to other energies, given suitable telescope parameters. The 5-telescope cell investigated in this study could initially pave the way for a larger array of sparsely spaced telescopes in an effort to push the collection area to >10 km2. These results highlight the potential of a `sparse array' approach in effectively opening up the energy range above 10 TeV.Comment: Published in Astroparticle Physic

    Interface dynamics in Hele-Shaw flows with centrifugal forces. Preventing cusp singularities with rotation

    Get PDF
    A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show that the interplay between injection and rotation modifies drastically the scenario of formation of finite-time cusp singularities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation rate above which cusp formation is prevented. We also find an exact sufficient condition to avoid cusps simultaneously for all initial conditions. This condition admits a simple interpretation related to the linear stability problem.Comment: 4 pages, 2 figure

    Production of a Higgs pseudoscalar plus two jets in hadronic collisions

    Get PDF
    We consider the production of a Higgs pseudoscalar accompanied by two jets in hadronic collisions. We work in the limit that the top quark is much heavier than the Higgs pseudoscalar and use an effective Lagrangian for the interactions of gluons with the pseudoscalar. We compute the amplitudes involving: 1) four gluons and the pseudoscalar, 2) two quarks, two gluons and the pseudoscalar and 3) four quarks and the pseudoscalar. We find that the pseudoscalar amplitudes are nearly identical to those for the scalar case, the only differences being the overall size and the relative signs between terms. We present numerical cross sections for proton-proton collisions with center-of-mass energy 14 TeV.Comment: 12 pages, LaTeX, 4 Postscript figures, submitted to Phys. Rev.
    corecore