16,172 research outputs found

    Response time to colored stimuli in the full visual field

    Get PDF
    Peripheral visual response time was measured in seven dark adapted subjects to the onset of small (45' arc diam), brief (50 msec), colored (blue, yellow, green, red) and white stimuli imaged at 72 locations within their binocular field of view. The blue, yellow, and green stimuli were matched for brightness at about 2.6 sub log 10 units above their absolute light threshold, and they appeared at an unexpected time and location. These data were obtained to provide response time and no-response data for use in various design disciplines involving instrument panel layout. The results indicated that the retina possesses relatively concentric regions within each of which mean response time can be expected to be of approximately the same duration. These regions are centered near the fovea and extend farther horizontally than vertically. Mean foveal response time was fastest for yellow and slowest for blue. Three and one-half percent of the total 56,410 trials presented resulted in no-responses. Regardless of stimulus color, the lowest percentage of no-responses occurred within 30 deg arc from the fovea and the highest within 40 deg to 80 deg arc below the fovea

    Peripheral visual response time to colored stimuli imaged on the horizontal meridian

    Get PDF
    Two male observers were administered a binocular visual response time task to small (45 min arc), flashed, photopic stimuli at four dominant wavelengths (632 nm red; 583 nm yellow; 526 nm green; 464 nm blue) imaged across the horizontal retinal meridian. The stimuli were imaged at 10 deg arc intervals from 80 deg left to 90 deg right of fixation. Testing followed either prior light adaptation or prior dark adaptation. Results indicated that mean response time (RT) varies with stimulus color. RT is faster to yellow than to blue and green and slowest to red. In general, mean RT was found to increase from fovea to periphery for all four colors, with the curve for red stimuli exhibiting the most rapid positive acceleration with increasing angular eccentricity from the fovea. The shape of the RT distribution across the retina was also found to depend upon the state of light or dark adaptation. The findings are related to previous RT research and are discussed in terms of optimizing the color and position of colored displays on instrument panels

    Renormalized broken-symmetry Schwinger-Dyson equations and the 2PI-1/N expansion for the O(N) model

    Full text link
    We derive the renormalized Schwinger-Dyson equations for the one- and two-point functions in the auxiliary field formulation of λϕ4\lambda \phi^4 field theory to order 1/N in the 2PI-1/N expansion. We show that the renormalization of the broken-symmetry theory depends only on the counter terms of the symmetric theory with ϕ=0\phi = 0. We find that the 2PI-1/N expansion violates the Goldstone theorem at order 1/N. In using the O(4) model as a low energy effective field theory of pions to study the time evolution of disoriented chiral condensates one has to {\em{explicitly}} break the O(4) symmetry to give the physical pions a nonzero mass. In this effective theory the {\em additional} small contribution to the pion mass due to the violation of the Goldstone theorem in the 2-PI-1/N equations should be numerically unimportant

    Modelling RF interference effects in integrated circuits

    Get PDF

    Isolation of microsatellite loci in the Capricorn silvereye, Zosterops lateralis chlorocephalus (Aves : Zosteropidae)

    Get PDF
    The Capricorn silvereye (Zosterops lateralis chlorocephalus ) is ideally suited to investigating the genetic basis of body size evolution. We have isolated and characterized a set of microsatellite markers for this species. Seven out of 11 loci were polymorphic. The number of alleles detected ranged from two to five and observed heterozygosities between 0.12 and 0.67. One locus, ZL49, was found to be sex-linked. This moderate level of diversity is consistent with that expected in an isolated, island population

    On Lattice Computations of K+ --> pi+ pi0 Decay at m_K =2m_pi

    Get PDF
    We use one-loop chiral perturbation theory to compare potential lattice computations of the K+ --> pi+ pi0 decay amplitude at m_K=2m_pi with the experimental value. We find that the combined one-loop effect due to this unphysical pion to kaon mass ratio and typical finite volume effects is still of order minus 20-30%, and appears to dominate the effects from quenching.Comment: 4 pages, revte

    QCD Corrections to Production of Higgs Pseudoscalars

    Full text link
    Models of electroweak symmetry breaking with more than a single doublet of Higgs scalars contain a neutral pseudoscalar boson. The production of such a pseudoscalar in hadron collisions proceeds primarily via gluon fusion through a top-quark loop (except for those models in which the pseudoscalar coupling to bottom quarks is strongly enhanced). We compute the QCD corrections to this process in the heavy-quark limit, using an effective Lagrangian derived from the axial anomaly.Comment: 9 pages, (BNL number added, 1 typo corrected, PHYZZX format, 4 figures not included, available on request), BNL-4906

    Effect of Loading on Field Uniformity : Energy Diffusion in Reverberant Environments

    Get PDF
    In reverberant electromagnetic environments such as reverberation chambers, shielding enclosures, vehicles and buildings, the electromagnetic energy density is often assumed to be uniform and the direction of arrival of electromagnetic waves (Poynting vector) and their polarisation is assumed uniformly distributed. This is the basis of the power balance method for electromagnetic coupling analysis and much of the theory of reverberation chambers. However significant field inhomogeneity is often encountered in practice when significant losses are present. In this paper we show why this must be so when an energy flow exists from the source of energy to absorptive elements, and how the non-uniformity can be determined using a diffusion based solution. The diffusion based solution, though not as computationally efficient as the power balance method, is still much more efficient than a full-wave approach
    • …
    corecore