162 research outputs found

    Understanding the Role of Behavior and Cognitions in a Group Exercise Setting

    Get PDF
    The first purpose of the present study examined whether individuals with different exercise behaviors (classified by attendance) experienced different or similar cognitive patterns. It was hypothesized that different behavior would lead to different cognitive appraisals. It was predicted that there would be a difference between the three behavioral frequency groups with regard to self-efficacy measures and goal measures. The second purpose of the study was to describe, evaluate and observe whether social factors were associated with participating in exercise in groups. It was hypothesized that those who engage in exercise classes would elicit a social focus. Participants for the study included 39 females who registered in-group fitness classes at a mid-sized university. Attendance over the 10-week course was assessed and participants completed a self-report questionnaire during week seven. The attendance data were used to create 3 exercise frequency groups (regular attenders, sporadic attenders, and dropouts) based on ACSM’s exercise guidelines. Analysis of Variance (ANOVA), means and frequencies were used to describe the data. There were no significant differences on measures of self-efficacy. Continued research is necessary to investigate the benefit of social suport in a group exercise setting, as well as to better understand how self-regulation through self-efficacy and goal factors influences and is influenced by actual behavior

    Modulator-Controlled Synthesis of Microporous STA-26, an Interpenetrated 8,3-Connected Zirconium MOF with the the-i Topology, and its Reversible Lattice Shift

    Get PDF
    A fully interpenetrated 8,3-connected zirconium MOF with the the-i topology type, STA-26 (St Andrews porous material-26), has been prepared using the 4,4′,4“-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate (TMTB) tritopic linker with formic acid as a modulating agent. In the as-prepared form STA-26 possesses Im (Formula presented.) m symmetry compared with the Pm (Formula presented.) m symmetry of the non-interpenetrated analogue, NU-1200, prepared using benzoic acid as a modulator. Upon removal of residual solvent there is a shift between the interpenetrating lattices and a resultant symmetry change to Cmcm which is fully reversible. This is observed by X-ray diffraction and 13C MAS NMR is also found to be remarkably sensitive to the structural transition. Furthermore, heating STA-26(Zr) in vacuum dehydroxylates the Zr 6 nodes leaving coordinatively unsaturated Zr 4+ sites, as shown by IR spectroscopy using CO and CD 3CN as probe molecules. Nitrogen adsorption at 77 K together with grand canonical Monte Carlo simulations confirms a microporous, fully interpenetrated, structure with pore volume 0.53 cm 3 g −1 while CO 2 adsorption at 196 K reaches 300 cm 3 STP g −1 at 1 bar. While the pore volume is smaller than that of its non-interpenetrated mesoporous analogue, interpenetration makes the structure more stable to moisture adsorption and introduces shape selectivity in adsorption. </p

    Adolescence is a sensitive period for prefrontal microglia to act on cognitive development

    Full text link
    The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain’s resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Modulator-controlled synthesis of microporous STA-26, an interpenetrated 8,3-connected zirconium MOF with the the-i topology, and its reversible lattice shift

    Get PDF
    The authors acknowledge the support of the EPSRC/St Andrews Criticat CDT (RRRP, PAW) and the European Community Seventh Framework Program (FP7/2007-2013) number 608490 (project M4CO2) (KKC, MYM, KIH, PAW). SEA would like to thank the Royal Society and Wolfson Foundation for a merit award. This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath. The research data (and/or materials) supporting this publication can be accessed at DOI: http://dx.doi.org/10.17630/6ffeed8a-e75f-4648-968f-3ed32a94e9a0.A fully interpenetrated 8,3-connected zirconium MOF with the the-i topology type, STA-26 (St Andrews porous material-26), has been prepared using the 4,4',4"-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate (TMTB) tritopic linker with formic acid as a modulating agent. In the as-prepared form STA-26 possesses Im-3m symmetry compared with the Pm-3m symmetry of the non-interpenetrated analogue, NU-1200, prepared using benzoic acid as a modulator. Upon removal of residual solvent there is a shift between the interpenetrating lattices and a resultant symmetry change to Cmcm which is fully reversible. This is observed by X-ray diffraction and 13C MAS NMR is also found to be remarkably sensitive to the structural transition. Furthermore, heating STA-26(Zr) in vacuum dehydroxylates the Zr6 nodes leaving coordinatively unsaturated Zr4+ sites, as shown by IR spectroscopy using CO and CD3CN as probe molecules. Nitrogen adsorption at 77 K together with grand canonical Monte Carlo simulations confirms a microporous, fully interpenetrated, structure with pore volume 0.53 cm3 g−1 while CO2 adsorption at 196 K reaches 300 cm3 STP g−1 at 1 bar. While the pore volume is smaller than that of its non-interpenetrated mesoporous analogue, interpenetration makes the structure more stable to moisture adsorption and introduces shape selectivity in adsorption.PostprintPeer reviewe

    Behavioural activation therapy for anxiety disorders in adults

    Get PDF
    This is a protocol for a Cochrane Review (intervention). The objectives are as follows: 1. To study the effects of BA in comparison with other psychological therapies (e.g. mindfulness therapy, CBT, dialectical behavioural therapy) for anxiety disorders in adults. 2. To study the effects of BA compared with pharmacotherapy for anxiety disorders in adults. 3. To study the effects of BA compared with treatment as usual, waiting list, placebo, and no treatment for anxiety disorders in adults
    • …
    corecore